IFN-γ auto-antibody: An overview as one of the autoimmunity effect

Dyah Ika Krisnawati, Dwi Rahayu, Fajar Rinawati, Erna Susilowati, Puguh Santoso, Rofik Darmayanti, Betristasia Puspitasari, Yunarsih Yunarsih, Sucipto Sucipto, Tsung Rong Kuo

Article ID: 4562
Vol 8, Issue 1, 2024

VIEWS - 442 (Abstract) 51 (PDF)

Abstract


Interferon Gamma (IFN-γ) plays a vital role in normal immune surveillance and possesses immunomodulatory, antimicrobial, and anticancer properties. It stands as the exclusive type II IFN, and its production is regulated by cytokines released by Antigen-Presenting Cells (APCs), particularly interleukin (IL)-12 and IL-18. These cytokines act as a connecting link between infection and IFN-γ production in the innate immune response. The functional IFN-γ receptor (IFNGR) consists of two ligand-binding IFNGR1 chains and two signal-transducing IFNGR2 chains, along with associated signaling machinery. Both IFNGR1 and IFNGR2 chains belong to the class II cytokine receptor family, characterized by ligand binding in the small angle of a V formed by the two Ig-like folds in the extracellular domain. Autoantibodies targeting interferon-gamma (IFN-γ) can lead to immunodeficiency and are linked to various opportunistic infections. The immunopathogenesis is associated with the neutralizing activity of these autoantibodies on the IFN-γ signaling pathway, resulting in the blocking of certain immune responses activated by IFN-γ. This review provides a concise overview of IFN-γ Autoantibody detection, the immunopathogenesis of related diseases, and potential treatment options.


Keywords


interferon gamma; autoantibody; detection; immunopathogenesis; treatment

Full Text:

PDF


References


1. Krisnawati DI, Liu YC, Lee YJ, et al. Functional neutralization of anti-IFN-γ autoantibody in patients with nontuberculous mycobacteria infection. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-41952-1

2. Munder M, Mallo M, Eichmann K, Modelell M. Direct stimulation of macrophages by IL-12 and IL-18-a bridge built on solid ground. Immunol Lett. 2001; 75: 159-60. doi: 10.1016/S0165-2478(00)00288-1

3. Thoreaun E, Petridou B, Kelly PA, et al. Structural symmetry of the extracellular domain of the cytokine/growth hormone/prolactin receptor family and interferon receptors revealed by hydrophobic cluster analysis. FEBS Lett. 1991; 282: 26-31. doi: 10.1016/0014-5793(91)80437-8

4. Espejo C, Penkowa M, Sáez-Torres I, et al. Treatment with Anti-interferon-γ Monoclonal Antibodies Modifies Experimental Autoimmune Encephalomyelitis in Interferon-γ Receptor Knockout Mice. Experimental Neurology. 2001; 172(2): 460-468. doi: 10.1006/exnr.2001.7815

5. Jacob CO, McDevitt HO. Tumour necrosis factor-α in murine autoimmune “lupus” nephritis. Nature. 1988; 331(6154): 356-358. doi: 10.1038/331356a0

6. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proceedings of the National Academy of Sciences. 2003; 100(5): 2610-2615. doi: 10.1073/pnas.0337679100

7. Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987; 1: 893-5. doi: 10.1016/S0140-6736(87)92863-7

8. Sarvetnick N, Liggitt D, Pitts SL, et al. Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell. 1998; 52: 773-82. doi: 10.1016/0092-8674(88)90414-X

9. Subramaniam PS, Torres BA, Johnson HM. So Many Ligands, So Few Transcription Factors: A New Paradigm for Signaling Through the Stat Transcription Factors. Cytokine. 2001; 15(4): 175-187. doi: 10.1006/cyto.2001.0905

10. Browne SK, Zaman R, Sampaio EP, et al. Anti-CD20 (rituximab) therapy for anti–IFN-γ autoantibody–associated nontuberculous mycobacterial infection. Blood. 2012; 119(17): 3933-3939. doi: 10.1182/blood-2011-12-395707

11. Browne SK, Burbelo PD, Chetchotisakd P, et al. Adult-Onset Immunodeficiency in Thailand and Taiwan. New England Journal of Medicine. 2012; 367(8): 725-734. doi: 10.1056/nejmoa1111160

12. Patel SY, Ding L, Brown MR, et al. Anti-IFN-γ Autoantibodies in Disseminated Nontuberculous Mycobacterial Infections. The Journal of Immunology. 2005; 175(7): 4769-4776. doi: 10.4049/jimmunol.175.7.4769

13. Saha B, Jyothi Prasanna S, Chandrasekar B, et al. Gene modulation and immunoregulatory roles of Interferonγ. Cytokine. 2010; 50(1): 1-14. doi: 10.1016/j.cyto.2009.11.021

14. Krisnawati DI, Liu YC, Lee YJ, et al. Blockade Effects of Anti-Interferon- (IFN-) γ Autoantibodies on IFN-γ-Regulated Antimicrobial Immunity. Journal of Immunology Research. 2019; 2019: 1-7. doi: 10.1155/2019/1629258

15. Kampmann B, Hemingway C, Stephens A, et al. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-γ. Journal of Clinical Investigation. 2005; 115(9): 2480-2488. doi: 10.1172/jci19316

16. Chetchotisakd P, Kiertiburanakul S, Mootsikapun P, et al. Disseminated Nontuberculous Mycobacterial Infection in Patients Who Are Not Infected with HIV in Thailand. Clinical Infectious Diseases. 2007; 45(4): 421-427. doi: 10.1086/520030

17. Chetchotisakd P, Mootsikapun P, Anunnatsiri S, et al. Disseminated Infection Due to Rapidly Growing Mycobacteria in Immunocompetent Hosts Presenting with Chronic Lymphadenopathy: A Previously Unrecognized Clinical Entity. Clinical Infectious Diseases. 2000; 30(1): 29-34. doi: 10.1086/313589

18. Doffinger R, Helbert MR, Barcenas‐Morales G, et al. Autoantibodies to Interferon‐γ in a Patient with Selective Susceptibility to Mycobacterial Infection and Organ‐Specific Autoimmunity. Clinical Infectious Diseases. 2004; 38(1): e10-e14. doi: 10.1086/380453

19. Höflich C, Sabat R, Rosseau S, et al. Naturally occurring anti–IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood. 2004; 103(2): 673-675. doi: 10.1182/blood-2003-04-1065

20. Kampitak T, Suwanpimolkul G, Browne S, et al. Anti-interferon-γ autoantibody and opportunistic infections: case series and review of the literature. Infection. 2010; 39(1): 65-71. doi: 10.1007/s15010-010-0067-3

21. Koya T, Tsubata C, Kagamu H, et al. Anti-interferon-γ autoantibody in a patient with disseminated Mycobacterium avium complex. Journal of Infection and Chemotherapy. 2009; 15(2): 118-122. doi: 10.1007/s10156-008-0662-8

22. Chi CY, Chu CC, Liu JP, et al. Anti–IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16: 02 and HLA-DQB1*05: 02 and the reactivation of latent varicella-zoster virus infection. Blood. 2013; 121(8): 1357-1366. doi: 10.1182/blood-2012-08-452482

23. Holland SM, Dorman SE, Kwon A, et al. Abnormal Regulation of Interferon‐γ, Interleukin‐12, and Tumor Necrosis Factor‐α in Human Interferon‐g Receptor 1 Deficiency. The Journal of Infectious Diseases. 1998; 178(4): 1095-1104. doi: 10.1086/515670

24. Ding L, Mo A, Jutivorakool K, et al. Determination of Human Anticytokine Autoantibody Profiles Using a Particle-Based Approach. Journal of Clinical Immunology. 2011; 32(2): 238-245. doi: 10.1007/s10875-011-9621-8

25. Rosen LB, Freeman AF, Yang LM, et al. Anti–GM-CSF Autoantibodies in Patients with Cryptococcal Meningitis. The Journal of Immunology. 2013; 190(8): 3959-3966. doi: 10.4049/jimmunol.1202526

26. Mahnke YD, Greenwald JH, DerSimonian R, et al. Selective expansion of polyfunctional pathogen-specific CD4+ T cells in HIV-1–infected patients with immune reconstitution inflammatory syndrome. Blood. 2012; 119(13): 3105-3112. doi: 10.1182/blood-2011-09-380840

27. Meintjes G, Wilkinson KA, Rangaka MX, et al. Type 1 Helper T Cells and FoxP3-positive T Cells in HIV–Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome. American Journal of Respiratory and Critical Care Medicine. 2008; 178(10): 1083-1089. doi: 10.1164/rccm.200806-858oc

28. Barber DL, Mayer-Barber KD, Antonelli LRV, et al. Th1-driven immune reconstitution disease in Mycobacterium avium–infected mice. Blood. 2010; 116(18): 3485-3493. doi: 10.1182/blood-2010-05-286336

29. Walker NF, Scriven J, Meintjes GWR. Immune reconstitution inflam- matory syndrome in HIV-infected patients. HIV AIDS (Auckl). 2015; 7: 49–64.

30. Hirsch CS, Toossi Z, Othieno C, et al. Depressed T‐Cell Interferon‐γ Responses in Pulmonary Tuberculosis: Analysis of Underlying Mechanisms and Modulation with Therapy. The Journal of Infectious Diseases. 1999; 180(6): 2069-2073. doi: 10.1086/315114

31. Hawkey CR, Yap T, Pereira J, et al. Characterization and Management of Paradoxical Upgrading Reactions in HIV-Uninfected Patients with Lymph Node Tuberculosis. Clinical Infectious Diseases. 2005; 40(9): 1368-1371. doi: 10.1086/429317

32. Krupa A, Fol M, Dziadek BR, et al. Binding of CXCL8/IL-8 toMycobacterium tuberculosisModulates the Innate Immune Response. Mediators of Inflammation. 2015; 2015: 1-11. doi: 10.1155/2015/124762

33. Seddiki N, Sasson SC, Santner‐Nanan B, et al. Proliferation of weakly suppressive regulatory CD4+ T cells is associated with over‐active CD4+ T‐cell responses in HIV‐positive patients with mycobacterial immune restoration disease. European Journal of Immunology. 2009; 39(2): 391-403. doi: 10.1002/eji.200838630

34. Ravimohan S, Tamuhla N, Steenhoff AP, et al. Immunological profiling of tuber- culosis-associated immune reconstitution inflammatory syndrome and non-im- mune reconstitution inflammatory syndrome death in HIV-infected adults with pulmonary tuberculosis starting antiretroviral therapy: A prospective obs. The Lancet Infectious Diseases. 2015; 15: 429-38. doi: 10.1016/S1473-3099(15)70008-3

35. Barber DL, Andrade BB, McBerry C, et al. Role of IL-6 in Mycobacterium avium–Associated Immune Reconstitution Inflammatory Syndrome. The Journal of Immunology. 2014; 192(2): 676-682. doi: 10.4049/jimmunol.1301004

36. Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. Journal of Allergy and Clinical Immunology. 2008; 122(6): 1043-1051. doi: 10.1016/j.jaci.2008.10.037

37. Madariaga L, Amurrio C, Martín G, et al. Detection of anti-interferon-gamma autoantibodies in subjects infected by Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease. 1998; 2: 62-68.

38. Macdonald SHF, Woodward E, Coleman MM, et al. Networked T Cell Death following Macrophage Infection by Mycobacterium tuberculosis. PLoS ONE. 2012; 7(6): e38488. doi: 10.1371/journal.pone.0038488

39. Burdeinick-Kerr R, Griffin DE. Gamma Interferon-Dependent, Noncytolytic Clearance of Sindbis Virus Infection from Neurons In Vitro. Journal of Virology. 2005; 79(9): 5374-5385. doi: 10.1128/jvi.79.9.5374-5385.2005

40. O’Donnell LA, Conway S, Rose RW, et al. STAT1-Independent Control of a Neurotropic Measles Virus Challenge in Primary Neurons and Infected Mice. The Journal of Immunology. 2012; 188(4): 1915-1923. doi: 10.4049/jimmunol.1101356

41. Podolsky MA, Solomos AC, Durso LC, et al. Extended JAK activation and delayed STAT1 dephosphorylation contribute to the distinct signaling profile of CNS neurons exposed to interferon-gamma. Journal of Neuroimmunology. 2012; 251(1-2): 33-38. doi: 10.1016/j.jneuroim.2012.06.006

42. Lee M, McGeer E, McGeer PL. Neurotoxins released from interferon-gamma-stimulated human astrocytes. Neuroscience. 2013; 229: 164-175. doi: 10.1016/j.neuroscience.2012.10.033

43. Song R, Koyuncu OO, Greco TM, et al. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion. mBio. 2016; 7(1). doi: 10.1128/mbio.02145-15

44. O’Donnell LA, Henkins KM, Kulkarni A, et al. Interferon gamma induces protective non‐canonical signaling pathways in primary neurons. Journal of Neurochemistry. 2015; 135(2): 309-322. doi: 10.1111/jnc.13250

45. Burdeinick-Kerr R, Govindarajan D, Griffin DE. Noncytolytic Clearance of Sindbis Virus Infection from Neurons by Gamma Interferon Is Dependent on Jak/Stat Signaling. Journal of Virology. 2009; 83(8): 3429-3435. doi: 10.1128/jvi.02381-08

46. Seifert HA, Collier LA, Chapman CB, et al. Pro-Inflammatory Interferon Gamma Signaling is Directly Associated with Stroke Induced Neurodegeneration. Journal of Neuroimmune Pharmacology. 2014; 9(5): 679-689. doi: 10.1007/s11481-014-9560-2

47. Seifert HA, Leonardo CC, Hall AA, et al. The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metabolic Brain Disease. 2012; 27(2): 131-141. doi: 10.1007/s11011-012-9283-0

48. Bombeiro AL, D’Império Lima MR, Chadi G, et al. Neurodegeneration and Increased Production of Nitrotyrosine, Nitric Oxide Synthase, IFN-γ and S100β Protein in the Spinal Cord of IL-12p40-Deficient Mice Infected with Trypanosoma cruzi Neuroimmunomodulation. 2009; 17(2): 67-78. doi: 10.1159/000258689

49. Blasko I, Veerhuis R, Stampfer-Kountchev M, et al. Costimulatory Effects of Interferon-γ and Interleukin-1β or Tumor Necrosis Factor α on the Synthesis of Aβ1-40 and Aβ1-42 by Human Astrocytes. Neurobiology of Disease. 2000; 7(6): 682-689. doi: 10.1006/nbdi.2000.0321

50. Hong HS, Hwang EM, Sim HJ et al. Interferon gamma stimulates beta- secretase expression and sAPPbeta production in astrocytes. Biochemical and Biophysical Research Communications. 2003; 307(4): 922-7. doi: 10.1016/S0006-291X(03)01270-1

51. Huberman M, Shalit F, Roth-Deri I et al. Correlation of cytokine secretion by mononuclear cells of Alzheimer patients and their disease stage. Journal of Neuroimmunology. 1994; 52(2): 147-52. doi: 10.1016/0165-5728(94)90108-2

52. Reale M, Iarlori C, Feliciani C, et al. Peripheral Chemokine Receptors, Their Ligands, Cytokines and Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2008; 14(2): 147-159. doi: 10.3233/jad-2008-14203

53. Bate C, Kempster S, Last V, et al. Journal of Neuroinflammation. 2006; 3(1): 7. doi: 10.1186/1742-2094-3-7

54. Asselineau D, Benlhassan K, Arosio B, et al. Interleukin-10 Production in Response to Amyloid-β Differs between Slow and Fast Decliners in Patients with Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2015; 46(4): 837-842. doi: 10.3233/jad-142832

55. Zamvil SS, Steinman L. The T Lymphocyte in Experimental Allergic Encephalomyelitis. Annual Review of Immunology. 1990; 8(1): 579-621. doi: 10.1146/annurev.iy.08.040190.003051

56. Liblau RS, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995; 16(1): 34-8. doi: 10.1016/0167-5699(95)80068-9

57. Panitch HS, Hirsch RL, Schindler J, et al. Treatment of multiple sclerosis with gamma interferon. Neurology. 1987; 37(7): 1097-1097. doi: 10.1212/wnl.37.7.1097

58. Dettke M, Scheidt P, Prange H, Kirchner H. Correlation between interferon production and clinical disease activity in patients with multiple sclerosis. Journal of Clinical Immunology. 1997; 17(4): 293-300. doi: 10.1023/A:1027374615106

59. Goverman J. Autoimmune T cell responses in the central nervous system. Nature Reviews Immunology. 2009; 9(6): 393-407. doi: 10.1038/nri2550

60. Lin W, Kemper A, Dupree JL, et al. Interferon-γ inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain. 2006; 129(5): 1306-1318. doi: 10.1093/brain/awl044

61. Lin W, Bailey SL, Ho H, et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. Journal of Clinical Investigation. 2007; 117(2): 448-456. doi: 10.1172/jci29571

62. Lin W, Lin Y, Li J, et al. Oligodendrocyte-Specific Activation of PERK Signaling Protects Mice against Experimental Autoimmune Encephalomyelitis. The Journal of Neuroscience. 2013; 33(14): 5980-5991. doi: 10.1523/jneurosci.1636-12.2013

63. Patterson CE, Lawrence DMP, Echols LA, et al. Immune-Mediated Protection from Measles Virus-Induced Central Nervous System Disease Is Noncytolytic and Gamma Interferon Dependent. Journal of Virology. 2002; 76(9): 4497-4506. doi: 10.1128/jvi.76.9.4497-4506.2002

64. Rodriguez M, Zoecklein LJ, Howe CL, et al. Gamma Interferon Is Critical for Neuronal Viral Clearance and Protection in a Susceptible Mouse Strain following Early Intracranial Theiler’s Murine Encephalomyelitis Virus Infection. Journal of Virology. 2003; 77(22): 12252-12265. doi: 10.1128/jvi.77.22.12252-12265.2003

65. Smith PM, Wolcott RM, Chervenak R, et al. Control of Acute Cutaneous Herpes Simplex Virus Infection: T Cell-Mediated Viral Clearance Is Dependent upon Interferon-γ (IFN-γ). Virology. 1994; 202(1): 76-88. doi: 10.1006/viro.1994.1324

66. Dorman SE, Holland SM. Interferon gamma and interleukin-12 pathway defects and human disease. Cytokine & Growth Factor Reviews. 2000; 11: 321-33. doi: 10.1016/S1359-6101(00)00010-1

67. Baerlecken N, Jacobs R, Stoll M, et al. Recurrent, MultifocalMycobacterium avium‐intercellulareInfection in a Patient with Interferon‐γ Autoantibody. Clinical Infectious Diseases. 2009; 49(7): e76-e78. doi: 10.1086/605581

68. Wongkulab P, Wipasa J, Chaiwarith R, et al. Autoantibody to Interferon-gamma Associated with Adult-Onset Immunodeficiency in Non-HIV Individuals in Northern Thailand. PLoS ONE. 2013; 8(9): e76371. doi: 10.1371/journal.pone.0076371

69. Tang BSF, Chan JFW, Chen M, et al. Disseminated Penicilliosis, Recurrent Bacteremic Nontyphoidal Salmonellosis, and Burkholderiosis Associated with Acquired Immunodeficiency Due to Autoantibody against Gamma Interferon. Clinical and Vaccine Immunology. 2010; 17(7): 1132-1138. doi: 10.1128/cvi.00053-10

70. Aoki A, Sakagami T, Yoshizawa K, et al. Clinical Significance of Interferon-γ Neutralizing Autoantibodies Against Disseminated Nontuberculous Mycobacterial Disease. Clinical Infectious Diseases. 2017; 66(8): 1239-1245. doi: 10.1093/cid/cix996

71. Phoompoung P, Ankasekwinai N, Pithukpakorn M, et al. Factors associated with acquired Anti IFN- γ autoantibody in patients with nontuberculous mycobacterial infection. PLOS ONE. 2017; 12(4): e0176342. doi: 10.1371/journal.pone.0176342

72. Poulin S, Corbeil C, Nguyen M, et al. Fatal Mycobacterium colombiense/cytomegalovirus coinfection associated with acquired immunodeficiency due to autoantibodies against interferon gamma: a case report. BMC Infectious Diseases. 2013; 13(1). doi: 10.1186/1471-2334-13-24

73. Hong GH, Ortega-Villa AM, Hunsberger S, et al. Natural History and Evolution of Anti-Interferon-γ Autoantibody-Associated Immunodeficiency Syndrome in Thailand and the United States. Clinical Infectious Diseases. 2019; 71(1): 53-62. doi: 10.1093/cid/ciz786

74. Lin CH, Chi CY, Shih HP, et al. Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease. Nature Medicine. 2016; 22(9): 994-1001. doi: 10.1038/nm.4158

75. Chang PH, Chuang YC. Anti-interferon-γ autoantibody-associated disseminated Mycobacterium abscessus infection mimicking parotid cancer with multiple metastases. Medicine. 2017; 96(39): e8118. doi: 10.1097/md.0000000000008118

76. Furuya H, Ikeda K, Miyachi K, et al. SAPHO syndrome-like presentation of disseminated nontuberculous mycobacterial infection in a case with neutralizing anti-IFNγ autoantibody. Rheumatology. 2017; 56(7): 1241-1243. doi: 10.1093/rheumatology/kex089

77. Ku CL, Lin CH, Chang SW, et al. Anti–IFN-γ autoantibodies are strongly associated with HLA-DR*15: 02/16: 02 and HLA-DQ*05: 01/05: 02 across Southeast Asia. Journal of Allergy and Clinical Immunology. 2016; 137(3): 945-948.e8. doi: 10.1016/j.jaci.2015.09.018

78. van de Vosse E, van Wengen A, van der Meide WF, et al. A 38-year-old woman with necrotising cervical lymphadenitis due to Histoplasma capsulatum. Infection. 2017; 45(6): 917-920. doi: 10.1007/s15010-017-1060-x

79. Yoshizawa K, Aoki A, Shima K, et al. Serum Anti-interferon-γ Autoantibody Titer as a Potential Biomarker of Disseminated Non-tuberculous Mycobacterial Infection. Journal of Clinical Immunology. 2020; 40(2): 399-405. doi: 10.1007/s10875-020-00762-1

80. Namkoong H, Asakura T, Ishii M, et al. First report of hepatobiliary Mycobacterium avium infection developing obstructive jaundice in a patient with neutralizing anti–interferon-gamma autoantibodies. New Microbes and New Infections. 2019; 27: 4-6. doi: 10.1016/j.nmni.2018.10.001

81. Wu UI, Chuang YC, Sheng WH, et al. Use of QuantiFERON-TB Gold In-tube assay in screening for neutralizing anti-interferon-γ autoantibodies in patients with disseminated nontuberculous mycobacterial infection. Clinical Microbiology and Infection. 2018; 24(2): 159-165. doi: 10.1016/j.cmi.2017.06.029

82. Ikeda H, Nakamura K, Ikenori M, et al. Severe Disseminated Mycobacterium avium Infection in a Patient with a Positive Serum Autoantibody to Interferon-γ. Internal Medicine. 2016; 55(20): 3053-3058. doi: 10.2169/internalmedicine.55.6896

83. Shima K, Sakagami T, Tanabe Y, et al. Novel assay to detect increased level of neutralizing anti-interferon gamma autoantibodies in non-tuberculous mycobacterial patients. Journal of Infection and Chemotherapy. 2014; 20(1): 52-56. doi: 10.1016/j.jiac.2013.08.003

84. Chetchotisakd P, Anunnatsiri S, Nanagara R, et al. Intravenous Cyclophosphamide Therapy for Anti-IFN-Gamma Autoantibody-AssociatedMycobacterium abscessusInfection. Journal of Immunology Research. 2018; 2018: 1-7. doi: 10.1155/2018/6473629

85. Tassaneeyakul W, Jantararoungtong T, Chen P, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009; 19(9): 704-9.

86. Chen P, Lin JJ, Lu CS, et al. Carbamazepine-Induced Toxic Effects and HLA-B*1502 Screening in Taiwan. New England Journal of Medicine. 2011; 364(12): 1126-1133. doi: 10.1056/nejmoa1009717

87. Lionetti E, Castellaneta S, Francavilla R, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. The New England Journal of Medicine. 2014; 371(14): 1295-303.

88. Thomas GP, Brown MA. Genetics and genomics of ankylosing spondylitis. Immunological Reviews. 2010; 233(1): 162-80.

89. Blackwell JM, Jamieson SE, Burgner D. HLA and Infectious Diseases. Clinical Microbiology Reviews. 2009; 22(2): 370-385. doi: 10.1128/cmr.00048-08

90. Pithukpakorn M, Roothumnong E, Angkasekwinai N, et al. HLA-DRB1 and HLA-DQB1 Are Associated with Adult-Onset Immunodeficiency with Acquired Anti-Interferon-Gamma Autoantibodies. PLOS ONE. 2015; 10(5): e0128481. doi: 10.1371/journal.pone.0128481

91. Tsai S, Santamaria P. MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity. Frontiers in Immunology. 2013; 4. doi: 10.3389/fimmu.2013.00321

92. Gonzalez-Galarza FF, Christmas S, Middleton D, et al. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Research. 2010; 39(Database): D913-D919. doi: 10.1093/nar/gkq1128

93. Bach EA, Aguet M, Schreiber RD. THE IFNγ RECEPTOR: A Paradigm for Cytokine Receptor Signaling. Annual Review of Immunology. 1997; 15(1): 563-591. doi: 10.1146/annurev.immunol.15.1.563

94. Young HA. Regulation of Interferon-γ Gene Expression. Journal of Interferon & Cytokine Research. 1996; 16(8): 563-568. doi: 10.1089/jir.1996.16.563

95. Carnaud C, Lee D, Donnars O, et al. Cutting Edge: Cross-Talk Between Cells of the Innate Immune System: NKT Cells Rapidly Activate NK Cells. The Journal of Immunology. 1999; 163(9): 4647-4650. doi: 10.4049/jimmunol.163.9.4647

96. Frucht DM, Fukao T, Bogdan C, et al. IFN-gamma production by antigen-presenting cells: Mechanisms emerge. Trends Immunol. 2001; 22: 556-60.

97. Harris DP, Haynes L, Sayles PC, et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunology. 2000; 1(6): 475-482. doi: 10.1038/82717

98. Gessani S, Belardelli F. IFN-gamma expression in macrophages and its possible biological significance. Cytokine & Growth Factor Reviews. 1998; 9: 117-23. doi: 10.1016/S1359-6101(98)00007-0

99. Sen GC. Viruses and Interferons. Annual Review of Microbiology. 2001; 55(1): 255-281. doi: 10.1146/annurev.micro.55.1.255

100. Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-γ: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology. 2003; 75(2): 163-189. doi: 10.1189/jlb.0603252

101. Boehm U, Klamp T, Groot M, et al. Cellular Responses to Interferon-γ. Annual Review of Immunology. 1997; 15(1): 749-795. doi: 10.1146/annurev.immunol.15.1.749

102. Virelizier JL, Arenzana-Seisdedos F. Immunological functions of macrophages and their regulation by interferons. Physics in Medicine and Biology. 1985; 63: 149-59.

103. Hoefsloot W, van Ingen J, Andrejak C, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. European Respiratory Journal. 2013; 42(6): 1604-1613. doi: 10.1183/09031936.00149212

104. Lai CC, Hsueh PR. Diseases caused by nontuberculous mycobacteria in Asia. Future Microbiology. 2014; 9(1): 93-106. doi: 10.2217/fmb.13.138

105. Watford WT, Moriguchi M, Morinobu A, O’Shea JJ. The biology of IL-12: Coordinating innate and adaptive immune responses. Cytokine & Growth Factor Reviews. 2003; 16: 361-368.

106. Robinson CM, O’Dee D, Hamilton T, et al. Cytokines Involved in Interferon-γ Production by Human Macrophages. Journal of Innate Immunity. 2009; 2(1): 56-65. doi: 10.1159/000247156

107. Schoenborn JR, Wilson CB. Regulation of interferon-c during innate and adaptive immune responses. Advances in Immunology. 2007; 96: 41-101.

108. Denis M, Gregg EO, Ghandirian E. Cytokine modulation of Mycobacterium tuberculosis growth in human macrophages. International Journal of Immunopharmacology. 1990; 12: 721-727.

109. Ochoa S, Li D, Kreuzburg S, Treat J, et al. Clinical Infectious Disease. Infectious Diseases Society of America; 2021.

110. Czaja CA, Merkel PA, Chan ED, et al. Rituximab as Successful Adjunct Treatment in a Patient with Disseminated Nontuberculous Mycobacterial Infection Due to Acquired Anti–Interferon-γ Autoantibody. Clinical Infectious Diseases; 58(6): e115-8. doi: 10.1093/cid/cit809

111. Xie YL, Rosen LB, Sereti I, et al. Severe Paradoxical Reaction During Treatment of Disseminated Tuberculosis in a Patient with Neutralizing Anti-IFNγ Autoantibodies. Clinical Infectious Diseases. 2016; 62(6): 770-773. doi: 10.1093/cid/civ995

112. Rujiwetpongstorn R, Chuamanochan M, Tovanabutra N, et al. Efficacy of acitretin in the treatment of reactive neutrophilic dermatoses in adult‐onset immunodeficiency due to interferon‐gamma autoantibody. The Journal of Dermatology. 2020; 47(6): 563-568. doi: 10.1111/1346-8138.15312

113. Cutrullis RA, Moscatelli GF, Moroni S, et al. Benznidazole Therapy Modulates Interferon-γ and M2 Muscarinic Receptor Autoantibody Responses in Trypanosoma cruzi-Infected Children. PLoS ONE. 2011; 6(10): e27133. doi: 10.1371/journal.pone.0027133




DOI: https://doi.org/10.24294/ti.v8.i1.4562

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dyah Ika Krisnawati, Dwi Rahayu, Fajar Rinawati, Erna Susilowati, Puguh Santoso, Rofik Darmayanti, Betristasia Puspitasari, Yunarsih, Sucipto, Tsung-Rong Kuo

License URL: https://creativecommons.org/licenses/by-nc/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.