The pathophysiology and clinical phenotypes of COVID-19 mRNA vaccine-related cutaneous adverse reactions: A narrative review

Osamu Ishikawa

Article ID: 3326
Vol 8, Issue 1, 2024

VIEWS - 723 (Abstract) 157 (PDF)

Abstract


Cutaneous adverse reactions (CARs) after COVD-19 messenger ribonucleic acid (mRNA) vaccines have been reported worldwide, but the pathophysiology of CARs remains to be elucidated. To understand the pathophysiology, it is essential to know how the innate and adaptive immunity are activated after vaccination. At present, majority of CARs are presumed to be evoked by innate immunity response. Reviewing the previous articles, I propose the clinical classification of CARs; local injection site reaction, generalized eruption, localized eruption and others. Since COVID-19 mutates continuously to overcome the existing vaccines, our steady efforts are indispensable to clarify the pathophysiology of CARs and contribute to the development of novel vaccines with least adverse events and high efficacy.


Keywords


COVID-19; mRNA vaccine; cutaneous adverse reaction; lipid nanoparticle; S protein

Full Text:

PDF


References


1. Lamprinou M, Sachinidis A, Stamoula E, et al. COVID-19 vaccines adverse events: potential molecular mechanisms. Immunol Res. 2023; 71(3): 356–372. doi: 10.1007/s12026-023-09357-5

2. Risma KA, Edwards KM, Hummell DS, et al. Potential mechanism of anaphylaxis to COVID-19 mRNA vaccines. J Allergy Clin Immunol. 2021; 147(6): 2075–2082.e2. doi: 10.1016/j.jaci.2021.04.002

3. Ogata AF, Cheng C, Desjardins M, et al. Circulating severe respiratory syndrome coronavirus 2 (SARS-C0V-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients. Clin Infect Dis. 2022; 74(4): 715–718. doi: 10.1093/cid/ciab465

4. Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022; 23(4): 543–555. doi: 10.1038/s41590-022-01163-9

5. Barrios Y, Franco A, Sanchez-Machin I, et al. The beauty of simplicity: Delayed-type hypersensitivity reaction to measure cellular immune responses in RNA-SARS-Cov-2 vaccinated individuals. Vaccines (Basel). 2021; 9(6): 575. doi: 10.3390/vaccines9060575

6. Klimek L, Bergmann KC, Brehler R, et al. Practical handling of allergic reactions to COVID-19 vaccines. Allergo J Int. 2021; 30(3): 79–95. doi: 10.1007/s40629-021-00165-7

7. Karikó K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004; 279(13): 12542–12550. doi: 10.1074/jbc.M310175200

8. Tatematsu M, Funami K, Seya T, et al. Extracellular RNA sensing by pattern recognition receptors. J Innate Immun. 2018; 10(5–6): 398–406. doi: 10.1159/000494034

9. Ablasser A, Poeck H, Anz D, et al. Selection of molecular structure and delivery of RNA oligonucleotides to activate TLR 7 versus TLR8 and to induce high amounts of IL-12p70 in primary human monocytes. J Immunol. 2009; 182(11): 6824–6833. doi: 10.4049/jimmunol.0803001

10. Hua Z, Hou B. TLR signaling in B-cell development and activation. Cell Mol Immunol. 2013; 10(2): 103–106. doi: 10.1038/cmi.2012.61

11. Goubau D, Schlee M, Deddouche S, et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’-diphosphate. Nature. 2014; 514(7522): 372–375. doi: 10.1038/nature13590

12. Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001; 413(6857): 732–738. doi: 10.1038/35099560

13. Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors. Trends Mol Med. 2007; 13(11): 460–469. doi: 10.1016/j.molmed.2007.09.002

14. Rehwinkel J, Tan CP, Goubau D, et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. 2010; 140(3): 397–408. doi: 10.1016/j.cell.2010.01.020

15. Schlee M. Master sensors of pathogenic RNA–RIG-I like receptors-. Immunobiology. 2013; 218(11): 1322–1335. doi: 10.1016/j.imbio.2013.06.007

16. Gregorio J, Meller S, Conrad C, et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med. 2010; 207(13): 2921–2930. doi: 10.1084/jem.20101102

17. Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013; 38(5): 855–869. doi: 10.1016/j.immuni.2013.05.007

18. Feng Q, Hato SV, Langereis MA, et al. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012; 2(5): 1187–1196. doi: 10.1016/j.celrep.2012.10.005

19. Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010; 38(17): 5884–5892. doi: 10.1093/nar/gkq347

20. Andries O, Mc Cafferty S, De Smedt SC, et al. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release. 2015; 217: 337–344. doi: 10.1016/j.jconrel.2015.08.051

21. Meyer M, Huang E, Yuzhakov O, et al. Modified NRNA-based vaccines elicit rubust immune responses and protect guinea pig from ebola virus disease. J Infect Dis. 2018; 217(3): 451–455. doi: 10.1093/infdis/jix592

22. Van Gulck ER, Ponsaerts P, Heyndrickx L, et al. Efficient stimulation of HIV-1-specific T cells using dendritic cells electroporated with mRNA encoding autologous HIV-1 Gag and Env proteins. Blood. 2006; 107(5): 1818–1827. doi: 10.1182/blood-2005-01-0339

23. Pardi N, Weissman D. Nucleoside modified RNA vaccines for infectious diseases. Methods Mol Biol. 2017; 1499: 109–121. doi: 10.1007/978-1-4939-6481-9_6

24. Pardi N, Muramatsu H, Weissman D, et al. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol. 2013; 969: 29–42. doi: 10.1007/978-1-62703-260-5_2

25. Hamming I, Timens W, Bulthuis M, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631–637. doi: 10.1002/path.1570

26. Sano H, Kase M, Aoyama Y, et al. A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA vaccination is possibly associated with the intralesional spike protein expressed by vascular endothelial cells and eccrine glands in the deep dermis. J Dermatol. 2023; 50(9): 1208–1212. doi: 10.1111/1346-8138.16816

27. Ndeupen S, Qin Z, Jacobsen S, et al. The mRNA-LNP platform’s nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021; 24(12): 103479. doi: 10.1016/j.isci.2021.103479

28. Alameh MG, Tombácz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021; 54(12): 2877-2892.e7. doi: 10.1016/j.immuni.2021.11.001

29. Tahtinen S, Tong AJ, Himmels P, et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol. 2022; 23(4): 532–542. doi: 10.1038/s41590-022-01160-y

30. Trougakos IP, Terpos E, Alexopoulos H, et al. Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends Mol Med. 2022; 28(7): 542–554. doi: 10.1016/j.molmed.2022.04.007

31. Wenande E, Garvey LH. Immediate-type hypersensitivity to polyethylene glycols: A review. Clin Exp Allergy. 2016; 46(7): 907–922. doi: 10.1111/cea.12760

32. Shah S, Prematta T, Adkinson NF, et al. Hypersensitivity to polyethylene glycols. J Clin Pharmacol. 2013; 53(3): 352–355. doi: 10.1177/0091270012447122

33. SARS-CoV-2 mRNA Vaccine (BNT162, PF-07302048) 2.6.4 PFIZER CONFIDENTIAL (Japanese). Available online: https://www.pmda.go.jp/drugs/2021/P20210212001/672212000_30300AMX00231_I100_2.pdf (accessed on 15 September 2022).

34. McMahon DE, Amerson E, Rosenbach M, et al. Cutaneous reactions reported after Moderna and Pfeizer COVID-19 vaccination: A registry-basedstudy of 414 patients. J Am Acad Dermatol. 2021; 85(1): 46. doi: 10.1016/j.jaad.2021.03.092

35. Bellinato F, Fratton Z, Girolomoni G, et al. Cutaneous adverse reactions to SARS-CoV-2 Vaccines: A systematic review and meta-analysis. Vaccines (Basel). 2022; 10(9): 1475. doi: 10.3390/vaccines10091475

36. Washrawirul C, Triwatcharikon J, Phannajit J, et al. Global prevalence and clinical manifestations of cutaneous adverse reactions following COVID-19 vaccination: A systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2022; 36(11): 1947–1968. doi: 10.1111/jdv.18294

37. Robinson LB, Fu X, Hashimoto D, et al. Incidence of cutaneous reactions after messenger RNA COVID-19 vaccines. JAMA Dermatol. 2021; 157(8); 1000–1002. doi: 10.1001/jamadermatol.2021.2114

38. Avallone G, Quaglino P, Cavallo F, et al. SARS-Co-2 vaccine-related cutaneous manifestations: A systematic review. Int J Dermatol. 2022; 61(10): 1187–1204. doi: 10.1111/ijd.16063

39. Tan SW, Tam YC, Pang SM. Cutaneous reactions to COVID-19 vaccines: A worldwide review. JAAD Int. 2022; 7: 178–186. doi: 10.1016/j.jdin.2022.01.011

40. Mahmood F, Cyr J, Li A, et al. Vesiculobullous and other cutaneous manifestations of COVID-19 vaccines: A scoping and narrative review. J Cut Med Surg. 2023; 27(3): 260–270. doi: 10.1177/12034754231156561

41. Klein SL, Flanagan KL. Sex differences in immune responses. Nature Rev Immunol. 2016; 16(10): 626–638. doi: 10.1038/nri.2016.90

42. Vaccaro M, Bertino L, Squeri R, et al. Early atypical injection-site reactions to COVID-19 vaccine: A case series. J Eur Acad Dermatol Venereol. 2022; 36(1): e24–e26. doi: 10.1111/jdv.17683

43. Català A, Muñoz-Santos C, Galván-Casas C, et al. Cutaneous reactions after SARS-CoV-2 vaccination: A cross-sectional Spanish nationwide study of 405 cases. Br J Dermatol. 2022; 186(1): 142–152. doi: 10.1111/bjd.20639

44. Kultawanich K, Sampattavanich N. Local bullous reaction as a cutaneous reaction after mRNA-boosted vaccination in a post-COVID patient. Clin Case Rep. 2022; 10(11): e6610. doi: 10.1002/ccr3.6610

45. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021; 384(5): 403–416. doi: 10.1056/NEJMoa2035389

46. Jacobson MA, Zakaria A, Maung Z, et al. Incidence and characteristics of delayed injection site reaction to the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (Moderna) in a cohort of hospital employees. Clin Infect Dis. 2022; 74(4): 591–596. doi: 10.1093/cid/ciab518

47. Hoff NP, Freise NF, Schmidt AG, et al. Delayed skin reaction after mRNA-1273 vaccine against SARS-CoV-2: a rare clinical reaction. Eur J Med Res 2021;26(1):98. doi: 10.1186/s40001-021-00557-z

48. Higashino T, Yamazaki Y, Senda S, et al. Assessment of Delayed Large Local Reactions After the First Dose of the SARS-CoV-2 mRNA-1273 Vaccine in Japan. JAMA Dermatol. 2022; 158(8): 923–927. doi: 10.1001/jamadermatol.2022.2088

49. Hibino M, Ishihara T, Iwata M, et al. Delayed injection site reaction after mRNA-1273 vaccination in Japan: A retrospective, cross-sectional study. Open Forum Infect Dis. 2021; 8(10): ofab497. doi: 10.1093/ofid/ofab497

50. Fernandez-Nieto D, Hammerle J, Fernandez-Escribano M, et al. Skin manifestations of the BNT162b2 mRNA COVID-19 vaccine in healthcare workers. ‘COVID-arm’: a clinical and histological characterization. J Eur Acad Dermatol Venereol. 2021; 35(7): e425–e427. doi: 10.1111/jdv.17250

51. Niebel D, Wenzel J, Wilsmann-Theis D, et al. Single-center clinico-pathological case study of 19 patients with cutaneous adverse reactions following COVID-19 vaccines. Dermatopathology (Basel). 2021; 8(4): 463–476. doi: 10.3390/dermatopathology8040049

52. Kempf W, Kettelhack N, Kind F, et al. ‘COVID arm’—Histological features of a delayed-type hypersensitivity reaction to Moderna mRNA-1273 SARS-CoV2 vaccine. J Eur Acad Dermatol Venereol. 2021; 35(11): e730–e732. doi: 10.1111/jdv.17506

53. Guerrero AJ, Estirado AD, Quirós JC, et al. Delayed cutaneous reactions after the administration of mRNA vaccines against COVID-19. J Allergy Clin Immunol Pract. 2021; 9(10): 3811–3813. doi: 10.1016/j.jaip.2021.07.012

54. Gambichler T, Boms S, Susok L, et al. Cutaneous findings following COVID-19 vaccination: Review of world literature and own experience. J Eur Acad Dermatol Venereol. 2022; 36(2): 172–180. doi: 10.1111/jdv.17744

55. Ju T, Lim SYD, Tey HL. Non-allergic nature of vast majority of cutaneous adverse reactions to mRNA COVID-19 vaccines: implications on treatment and re-vaccination. J Eur Acad Dermatol Venereol. 2022; 36(11): e861-e862. doi: 10.1111/jdv.18340

56. Anvari S, Samarakoon U, Fu X, et al. Urticaria and/or angioedema secondary to mRNA COVID-19 vaccines: Updates from a United States case registry. Allergy. 2023; 78(1): 283–286. doi: 10.1111/all.15447

57. Trelnikov A, Perkins G, Yuson C, et al. Basophil reactivity to BNT162b2 is mediated by PEGylated lipid nanoparticles in patients with PEG allergy. J Allergy Clin Immunol. 2021; 148(1): 91–95. doi: 10.1016/j.jaci.2021.04.032

58. Wolfson AR, Robinson LB, Li L, et al. First-dose mRNA COVID-19 vaccine allergic reactions: Limited role for excipient skin testing. Allergy Clin Immunol Pract. 2021; 9(9): 3308–3320. doi: 10.1016/j.jaip.2021.06.010

59. Grieco T, Ambrosio L, Trovato F, et al. Effects of Vaccination against COVID-19 in Chronic Spontaneous and Inducible Urticaria (CSU/CIU) Patients: A Monocentric Study. J Clin Med. 2022; 11(7): 1822. doi: 10.3390/jcm11071822

60. Mouliou DS, Dardiotis E. Current evidence in SARS-CoV-2 mRNA vaccines and post-vaccination adverse reports: Knowns and unknowns. Diagnostics (Basel). 2022; 12(7): 1555. doi: 10.3390/diagnostics12071555

61. Eid E, Abdullah L, Kurban M, et al. Herpes zoster emergence following mRNA COVID-19 vaccine. J Med Virol. 2021; 93(9): 5231–5232. doi: 10.1002/jmv.27036

62. Martinez-Reviejo R, Tejada S, Adebanjo GAR, et al. Varicella-zoster virus reactivation following severe acute respiratory syndrome coronavirus 2 vaccination or infection: new insights. Eur J Intern Med. 2022; 104: 73–79. doi: 10.1016/j.ejim.2022.07.022

63. Psichogiou M, Samarkos M, Mikos N, et al. Reactivation of Varicella Zoster Virus after Vaccination for SARS-CoV-2. Vaccines (Basel). 2021; 9(6): 572. doi:10.3390/vaccines9060572

64. Barda N, Dagan N, Ben-Shlomo Y, et al. Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting. N Engl J Med. 2021; 385(12): 1078–1090. doi: 10.1056/NEJMoa2110475

65. Hertel M, Heiland M, Nahles S, et al. Real-world evidence from over one million COVID-19 vaccinations is consistent with reactivation of the varicella-zoster virus. J Eur Acad Dermatol Venereol. 2022; 36(8): 1342–1348. doi: 10.1111/jdv.18184

66. Florea A, Wu J, Qian L, et al. Risk of herpes zoster following mRNA COVID-19 vaccine administration. Expert Rev Vaccines. 2023; 22(1): 643–649. doi: 10.1080/14760584.2023.2232451

67. Shasha D, Bareket R, Sikron FH, et al. Real-world safety data for the Pfizer BNT162b2 SARS-CoV-2 vaccine: Historical cohort study. Clin Microbiol Infect. 2022; 28(1): 130–134. doi: 10.1016/j.cmi.2021.09.018

68. Akpandak I, Miller DC, Sun Y, et al. Assessment of herpes zoster risk among recipients of COVID-19 vaccine. JAMA Netw Open. 2022; 5(11): e2242240. doi: 10.1001/jamanetworkopen.2022.42240

69. Birabaharan M, Kaelber DC, Karris MY. Risk of herpes zoster reactivation after messenger RNA COVID-19 vaccination; a cohort study. J Am Acad Dermatol. 2022; 87(3): 649–651. doi: 10.1016/j.jaad.2021.11.025

70. Patil SA, Dygert L, Galetta SL, et al. Apparent lack of association of COVID-19 vaccination with Herpes Zoster. Am J Ophthalmol Case Rep. 2022; 26: 101549. doi: 10.1016/j.ajoc.2022.101549

71. Ishiguro C, Mimura W, Uemura Y, et al. Multiregional population-based cohort study for evaluation of the association between herpes zoster and mRNA vaccinations for Severe Acute Respiratory Syndrome Coronavirus-2: the VENUS study. Open Forum Infect Dis. 2023; 10(7): ofad274. doi: 10.1093/ofid/ofad274

72. Chu CW, Jiesisibieke ZL, Yang YP, et al. Association of COVID-19 vaccination with herpes zoster: A systematic review and meta-analysis. Expert Rev Vaccines. 2022; 21(5): 601–608. doi: 10.1080/14760584.2022.2036128

73. Shafiee A, Amini MJ, Bahri RA, et al. Herpesviruses reactivation following COVID-19 vaccination: A systematic review and meta-analysis. Eur J Med Res. 2023; 28(1): 278. doi: 10.1186/s40001-023-01238-9

74. Chen IL, Chiu HY. Association of herpes zoster with COVID-19 vaccination: a systematic review and meta-analysis. J Am Acad Dermatol. 2023; 89(2): 370–371. doi: 10.1016/j.jaad.2023.03.031

75. Kahraman FC, Erdoğan SS, Aktaş ND, et al. Cutaneous reactions after COVID-19 vaccination in Turkey: A multicenter study. J Cosmet Dermatol. 2022; 21(9): 3692–3703. doi: 10.1111/jocd.15209

76. Préta LH, Contejean A, Salvo F, et al. Association study between herpes zoster reporting and mRNA COVID-19 vaccines (BNT162b2 and mRNA-1273). Br J Clin Pharmacol. 2022; 88(7): 3529–3534. doi: 10.1111/bcp.15280

77. Fathy RA, McMahon DE, Lee C, et al. Varicella-zoster and herpes simplex virus reactivation post-COVID-19 vaccination: a review of 40 cases in an International Dermatology Registry. J Eur Acad Dermatol Venereol. 2022; 36(1): e6–e9. doi: 10.1111/jdv.17646

78. Lee TJ, Lu CH, Hsieh S-C. Herpes zoster reactivation after mRNA-1273 vaccination in patients with rheumatic disease. Ann Rheum Dis. 2022; 81(4): 595–597.doi: 10.1136/annrheumdis-2021-221688

79. Machado PM, Lawson-Tovey S, Strangfeld A, et al. Safety of vaccination against SARS-CoV-2 in people with rheumatic and musculoskeletal diseases: results from the EULAR Coronavirus Vaccine (COVAX) physician-reported registry. Ann Rheum Dis. 2022; 81(5): 695–709. doi: 10.1136/annrheumdis-2021-221490

80. Chen J, Li F, Tian J, et al. Varicella zoster virus reactivation following COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A cross-sectional Chinese study of 318 cases. J Med Virol. 2023; 95(1): e28307. doi: 10.1002/jmv.28307

81. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomized trials. Lancet. 2021; 397(10277): 881–891. doi: 10.1016/S0140-6736(21)00432-3

82. Wan EYF, Chui CSL, Wang Y, et al. Herpes zoster related hospitalization after inactivated (CoronaVac) and mRNA (BNT162b2) SARS-CV-2 vaccination: A self-controlled case series and nested case-control study. Lancet Reg Health West Pac. 2022; 21: 100393. doi: 10.1016/j.lanwpc.2022.100393

83. McMahon DE, Kovarik CL, Damsky W, et al. Clinical and pathologic correlation of cutaneous COVID-19 vaccine reactions including V-REPP: A registry-based study. J Am Acad Dermatol. 2022; 86(1): 113–121. doi: 10.1016/j.jaad.2021.09.002

84. Larson V, Seidenberg R, Caplan A, et al. Clinical and histopathological spectrum of delayed adverse cutaneous reactions following COVID-19 vaccination. J Cutan Pathol. 2022; 49(1): 34–41. doi: 10.1111/cup.14104

85. Ohsawa R, Sano H, Ikeda M, et al. Clinical and histopathological views of morbilliform rash after COVID-19 mRNA vaccination mimic those in SARS-CoV-2 virus infection-associated cutaneous manifestations. J Dermatol Sci. 2021; 103(2): 124–127. doi: 10.1016/j.jdermsci.2021.06.006

86. Alhammad NS, Milibary HH, Baghadi RR, et al. Morbilliform eruption after administration of second dose of Oxford/AstraZeneca vaccine. Cureus. 2022; 14(5): e24649. doi: 10.7759/cureus.24649

87. Khan I, Elsanousi AA, Shareef AM, et al. Manifestation of pityriasis rosea and pityriasis rosea-like eruptions after Covid-19 vaccine: A systematic review. Immun Inflamm Dis. 2023; 11(4): e804. doi: 10.1002/iid3.804

88. Jimenez-Cauhe J, Ortega-Quijano D, Carretero-Barrio I, et al. Erythema multiforme-like eruption in patients with COVID-19 infection: clinical and histological findings. Clin Exp Dermatol. 2020; 45(7): 892–895. doi: 10.1111/ced.14281

89. Kim MJ, Kim JW, Kim MS, et al. Generalized erythema multiforme-like skin rash following the first dose of COVID-19 vaccine (Pfizer-Biontech). J Eur Acad Dermatol Venereol. 2021; 36(2): e98–e100. doi: 10.1111/jdv.17757

90. Borg L, Mercieca L, Mintoff D, et al. Pfizer-Biontech SARS-CoV-2 mRNA vaccine-associated erythema multiforme. J Eur Acad Dermatol Venereol. 2021; 36(1): e22–e24. doi: 10.1111/jdv.17682

91. Lefeuvre M, Kerneuzet I, Darrieux L, et al. Multisystem inflammatory syndrome with erythema multiforme-like rash in an adult after mRNA COVID-19 vaccination. Ann Dermatol Venereol. 2022; 149(3): 211–213. doi: 10.1016/j.annder.2022.02.001

92. Temiz SA, Abdelmaksoud A, Dursun R, et al. Pityriasis rosea following SARS-CoV-2 vaccination: A case series. J Cosmet Dermatol. 2021; 20(10): 3080–3084. doi: 10.1111/jocd.14372

93. Ramot Y, Nanova K, Faitatziadou S-M, et al. Six cases of pityriasis rosea following SARS-CoV-2 vaccination with BNT162b2. J Dtsch Dermatol Ges. 2022; 20(8): 1123–1124. doi: 10.1111/ddg.14784

94. Drago F, Ranieri E, Malaguti F, et al. Human herpesvirus 7 in patients with pityriasis rosea. Electron microscopy investigations and polymerase chain reaction in mononuclear cells, plasma and skin. Dermatology. 1997; 195(4): 374–378. doi: 10.1159/000245991

95. Broccolo F, Drago F, Careddu AM, et al. Additional evidence that pityriasis rosea is associated with reactivation of human herpesvirus-6 and -7. J Invest Dermatol. 2005; 124(6): 1234–1240. doi: 10.1111/j.0022-202X.2005.23719.x

96. Drago F, Broccolo F, Ciccarese G. Pityriasis rosea, pityriasis rosea-like eruptions, and herpes zoster in the setting of COVID-19 and COVID-19 vaccination. Clin Dermatol. 2022; 40(5): 586–590. doi: 10.1016/j.clindermatol.2022.01.002

97. Petruizzi M, Galleggiante S, Messina S, et al. Oral erythema multiforme after Pfizer-Biontech COVID-19 vaccination: a report of four cases. BMC Oral Health. 2022; 22(1): 90. doi: 10.1186/s12903-022-02124-2

98. Su JR, Haber P, Ng CS, et al. Erythema multiforme, Stevens Johnson syndrome, and toxic epidermal necrolysis reported after vaccination, 1999–2017. Vaccine. 2020; 38(7): 1746–1752. doi: 10.1016/j.vaccine.2019.12.028

99. Yousefian M, Khadivi A. Occurrence of erythema multiforme following COVID-19 vaccination: a review. Clin Exp Vaccine Res. 2023; 12(2): 87–96. doi: 10.7774/cevr.2023.12.2.87

100. Bertolani M, de Felici Del Giudice MB, Ridolo E, et al. Skin reaction to COVID-19 vaccine: A report of 4 cases. Dermatol Reports. 2022; 14(3): 9376. doi: 10.4081/dr.2022.9376

101. Kong J, Cuevas-Castillo F, Nassar M, et al. Bullous drug eruption after second dose of mRNA-1273 (Moderna) COVID-19 vaccine: Case report. J Infect Public Health. 2021; 14(10): 1392–1394. doi: 10.1016/j.jiph.2021.06.021

102. Bakir M, Almeshal H, Alturki R, et al. Toxic epidermal necrolysis post COVID-19 vaccination—First reported case. Cureus. 2021; 13(8): e17215. doi: 10.7759/cureus.17215

103. Zou H, Daveluy S. Toxic epidermal necrolysis and Stevens-Johnson syndrome after COVID-19 infection and vaccination. Australas J Dermatol. 2023; 64(1): e1–e10. doi: 10.1111/ajd.13958

104. Dash S, Sirka CS, Mishra S, et al. COVID-19 vaccine-induced Stevens-Johnson syndrome. Clin Exp Dermatol. 2021; 46(8): 1615–1617. doi: 10.1111/ced.14784

105. Elboraey MO, Essa EESF. Stevens-Johnson syndrome post second dose of Pfizer COVID-19 vaccine: A case report. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021; 132(4): e139–e142. doi: 10.1016/j.oooo.2021.06.019

106. Mansouri P, Chalangari R, Martits-Chalangari K, et al. Stevens-Johnson Syndrome due to COVID-19 vaccination. Clin Case Rep. 2021; 9(11): e05099. doi: 10.1002/ccr3.5099

107. Padniewski JJ, Jacobson-Dunlop E, Albadri S, et al. Stevens-Johnson syndrome precipitated by Moderna Inc. COVID-19 vaccine: A case-based review of literature comparing vaccine and drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Int J Dermatol. 2022; 61(8): 923–929. doi: 10.1111/ijd.16222

108. Mansouri P, Farshi S. A case of Steven-Johnson syndrome after COVID-19 vaccination. J Cosmet Dermatol. 2022; 21(4): 1358–1360. doi: 10.1111/jocd.14756

109. Mardani M, Mardani S, Kani ZA, et al. An extremely rare mucocutaneous adverse reaction following COVID-19 vaccination: Toxic epidermal necrolysis. Dermatol Ther. 2022; 35(5): e15416. doi: 10.1111/dth.15416

110. Aimo C, Mariotti EB, Corrà A, et al. Stevens-Johnson syndrome induced by Vaxvetria (AZD1222) COVID-19 vaccine. J Eur Acad Dermatol Venereol. 2022; 36(6): e417–e419. doi: 10.1111/jdv.17988

111. Boualila L, Mrini B, Tagmouti A, et al. Sinopharm COVID-19 vaccine-induced Stevens-Johnson syndrome. J Fr Ophtalmol. 2022; 45(4): e179–e182. doi: 10.1016/j.jfo.2021.12.005

112. Seck B, Dieye A, Diallo M. Lethal toxic epidermal necrolysis probably induced by Sinopharm COVID-19 vaccine. Rev Fr Allergol (2009). 2022; 62(6): 590–592. doi: 10.1016/j.reval.2022.07.001

113. Kherlopian A, Zhao C, Ge L, et al. A case of toxic epidermal necrolysis after ChAdOx1 nCov-19 (AZD1222) vaccination. Australas J Dermatol. 2022; 63(1): e93–e95. doi:10.1111/ajd.13742

114. Patel R, Lu V. An unusual presentation of Steven-Johnson syndrome Pfizer BNT162b2 COVID-19 vaccination. J Ayub Med Coll Abbottabad. 2023; 35(1): 180–181. doi: 10.55519/JAMC-01-11097

115. Jue MS, Joh HC, Kim SH, et al. Stevens-Johnson Syndrome/toxic epidermal necrolysis overlap after the third dose of BNT162b2 mRNA COVID-19 vaccination and literature review. Dermatitis. 2023; 34(2): 158–159. doi: 10.1089/derm.2022.29003.msj

116. Lo HK, Lin YC, Chen HM, et al. mRNA-1273 COVID-19 vaccine-induced Steven-Johnson syndrome. QJM. 2023; 116(3): 247–249. doi:10.1093/qjmed/hcac282

117. Sapsford S, Wood B. Severe cutaneous reaction to the messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) vaccine. N Z Med J. 2022; 135(1564): 72–76.

118. da Cruz Gouveia PA, Cavalcanti LNF, Alves LCF, et al. Stevens-Johnson syndrome after ChAdOx1 nCoV-19 vaccine. Indian J Dermatol Venereol Leprol. 2022; 88(5): 702. doi: 10.25259/IJDVL_941_2021

119. Marcelino J, Vieira J, Ferreira F, et al. Stevens-Johnson syndrome related with Comirnaty® coronavirus disease 2019 vaccine. Asia Pac Allergy. 2022; 12(3): e30. doi: 10.5415/apallergy.2022.12.e30

120. Siripipattanamongkol N, Rattanasak S, Taiyaitieng C, et al. Toxic epidermal necrolysis after first dose of Pfizer-BioNTech (BNT162b2) vaccination with pharmacogenomic testing. Pediatr Dermatol. 2022; 39(4): 601–605. doi: 10.1111/pde.15074

121. Kardaun SH, Sidoroff A, Valeyrie-Allanore L, et al. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: Does a DRESS syndrome really exist? Br J Dermatol. 2007; 156(3): 609–611. doi: 10.1111/j.1365-2133.2006.07704.x

122. Bocquet H, Bagot M, Roujeau JC. Drug-induced pseudolymphoma and drug hypersensitivity syndrome (Drug Rash with Eosinophilia and Systemic Symptoms: DRESS) Semin Cutan Med Surg. 1996; 15(4): 250–257. doi: 10.1016/s1085-5629(96)80038-1

123. Shiohara T, Inaoka M, Kano Y. Drug-induced hypersensitivity syndrome (DIHS): A reaction induced by a complex interplay among herpesviruses and antiviral and antidrug immune responses. Allergol Int. 2006; 55(1): 1–8. doi: 10.2332/allergolint.55.1

124. Lospinoso K, Nichols CS, Malachowski SJ, et al. A case of severe cutaneous adverse reaction following administration of the Janssen Ad26.COV2.S COVID-19 vaccine. JAAD Case Rep. 2021; 13: 134–137. doi: 10.1016/j.jdcr.2021.05.010

125. O'Connor T, O’Callaghan-Maher M, Ryan P, et al. Drug reaction with eosinophilia and systemic symptoms syndrome following vaccination with the AstraZeneca COVID-19 vaccine. JAAD Case Rep. 2022; 20: 14–16. doi: 10.1016/j.jdcr.2021.11.028

126. Korekawa A, Nakajima K, Fukushi K, et al. Three cases of drug-induced hypersensitivity syndrome associated with mRNA-based coronavirus disease 2019 vaccines. J Dermatol. 2022; 49(6): 652–655. doi: 10.1111/1346-8138.16347

127. Ikeda T, Yokoyama K, Kawakami T. Overlapping acute generalized exanthematous pustulosis drug reaction with eosinophilia and systemic symptoms induced by a second dose of the Moderna COVID-19 vaccine. J Dermatol. 2022; 49(12): e446–e447. doi: 10.1111/1346-8138.16541

128. Schroeder JW, Gamba C, Toniato A; COVID-19 Study Group; Rongioletti F. A definite case of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) induced by administration of the Pfizer/BioNTech BNT162b2 vaccine for SARS-CoV2.Clin Dermatol. 2022; 40(5): 591–594. doi: 10.1016/j.clindermatol.2022.02.018

129. Tay WC, Lee JSS, Chong WS. Tozinameran (Pfizer-BioNTech COVID-19 vaccine)-induced AGEP-DRESS syndrome. Ann Acad Med Singap. 2022; 51(12): 796–797. doi: 10.47102/annals-acadmedsg.2022338

130. Hanna M, Yang S. Eosinophilia and systemic symptoms (DRESS) Syndrome. Cureus. 2022; 14(11): e31310. doi: 10.7759/cureus.31310

131. Tomayko MM, Damsky W, Fathy R, et al. Subepidermal blistering eruptions, including bullous pemphigoid, following COVID-19 vaccination. J Allergy Clin Immunol. 2021; 148(3): 750–751. doi: 10.1016/j.jaci.2021.06.026

132. Seol JE, Ahn SW, Jang SH, et al. A case of recurrent fixed drug eruption following the administration of 2 different coronavirus disease 2019 vaccines verified using intradermal and patch tests. JAAD Case Rep. 2023; 33: 23-26. doi: 10.1016/j.jdcr.2022.08.029

133. Choi S, Kim SH, Hwang JH, et al. Rapidly progressing generalized bullous fixed drug eruption after the first dose of COVID-19 messenger RNA vaccination. J Dermatol. 2023; 50(9): 1190–1193. doi: 10.1111/1346-8138.16808

134. Gambichler T, Hamdani N, Budde H, et al. Bullous pemphigoid after SARS-CoV-2 vaccination: Spike-protein-directed immunofluorescence confocal microscopy and T-cell-receptor studies. Br J Dermatol. 2022; 186(4): 728–731. doi: 10.1111/bjd.20890

135. Calabria E, Canfora F, Mascolo M, et al. Autoimmune mucocutaneous blistering diseases after SARS-Cov-2 vaccination: A Case report of Pemphigus Vulgaris and a literature review. Pathol Res Pract. 2022; 232: 153834. doi: 10.1016/j.prp.2022.153834

136. Vojdani A, Vojdani E, Melgar AL, et al. Reaction of SARS-CoV-2 antibodies with other pathogens, vaccines, and food antigens. Front Immunol. 2022; 13: 1003094. doi: 10.3389/fimmu.2022.1003094

137. Kasperkiewicz M, Bednarek M, Tukaj S. Case Report: Circulating anti-SARS-CoV-2 antibodies do not cross-react with pemphigus or pemphigoid autoantigens. Front Med (Lausanne). 2021; 8: 807711. doi: 10.3389/fmed.2021.807711

138. Birabaharan M, Kaelber DC, Orme CM, et al. Evaluating risk of bullous pemphigoid after mRNA COVID-19 vaccination. Br J Dermatol. 2022; 187(2): 271–273. doi: 10.1111/bjd.21240

139. Freeman EE, McMahon DE, Lipoff JB, et al. The spectrum of COVID-19-associated dermatologic manifestations: An international registry of 716 patients from 31 countries. J Am Acad Dermatol. 2020; 83(4): 1118–1129. doi: 10.1016/j.jaad.2020.06.1016

140. Temiz SA, Abdelmaksoud A, Dursun R, et al. Acral chilblains-like lesions following inactivated SARS-CoV-2 vaccination. Int J Dermatol. 2021; 60(9): 1152–1153. doi: 10.1111/ijd.15619

141. Lesort C, Kanitakis J, Donzier L, et al. Chilblains-like lesions after BNT162b2 mRNA COVID-19 vaccine: A case report suggesting that ‘COVID toes’ are due to the immune reaction to SARS-CoV-2. J Eur Acad Dermatol Venereol. 2021; 35(10): e630–e632. doi: 10.1111/jdv.17451

142. Holmes GA, Desai M, Limone B, et al. A case series of cutaneous COVID-19 vaccine reactions at Loma Linda University Department of Dermatology JAAD Case Rep. 2021: 16: 53–57. doi: 10.1016/j.jdcr.2021.07.038

143. Meara AS, Silkowski M, Quin K, et al. A Case of Chilblains-like lesions post SARS-CoV-2 vaccine? J Rheumatol. 2021; 48(11): 1754. doi: 10.3899/jrheum.210226

144. Lopez S, Vakharia P, Vandergriff T, et al. Pernio after COVID-19 vaccination. Br J Dermatol. 2021; 185(2): 445–447. doi: 10.1111/bjd.20404

145. Kha C, Itkin A. New-onset chilblains in close temporal association to mRNA-1273 vaccination. JAAD Case Rep. 2021; 12: 12–14. doi: 10.1016/j.jdcr.2021.03.046

146. Shaikh TG, Waseem S, Ahmed SH, et al. SARS-CoV-2 vaccination and chilblains-like lesions: What do we know so far? Dermatol Pract Concept. 2022; 12(4): e2022170. doi: 10.5826/dpc.1204a170

147. Trougakos IP, Stamatelopoulos K, Terpos E, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci. 2021; 28(1): 9. doi: 10.1186/s12929-020-00703-5

148. Qiao JW, Dan Y, Wolf ME, et al. Post-vaccination COVID Toes (Chilblains) Exacerbated by Rituximab Infusion Suggests Interferon Activation as Mechanism. Mil Med. 2022; 187(11-12): e1480–e1482. doi: 10.1093/milmed/usab314

149. Verweij CL, Vosslamber S. New insight in the mechanism of action of rituximab: the interferon signature towards personalized medicine. Discov Med. 2011; 12(64): 229–236.

150. Di Bona D, Miniello A, Nettis E. Systemic drug-related intertriginous and flexural exanthema-like eruption after Oxford-AstraZeneca COVID-19 vaccine. Clin Mol Allergy. 2022; 20(1): 13. doi: 10.1186/s12948-022-00179-8

151. Chang Y, Wei W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin Exp Immunol. 2015; 179(2): 137–145. doi: 10.1111/cei.12467

152. Naor D. Editorial: Interaction Between Hyaluronic Acid and Its Receptors (CD44, RHAMM) Regulates the Activity of Inflammation and Cancer. Front Immunol. 2016; 7: 39. doi: 10.3389/fimmu.2016.00039

153. Munavalli GG, Knutsen-Larson S, Lupo MP, et al. Oral angiotensin-converting enzyme inhibitors for treatment of delayed inflammatory reaction to dermal hyaluronic acid fillers following COVID-19 vaccination-a model for inhibition of angiotensin II-induced cutaneous inflammation. JAAD Case Rep. 2021; 10: 63–68. doi: 10.1016/j.jdcr.2021.02.018

154. Rasner CJ, Schultz B, Bohjanen K, et al. Autoimmune bullous disorder flares following severe acute respiratory syndrome coronavirus 2 vaccination: A case series. J Med Case Rep. 2023; 17(1): 408. doi: 10.1186/s13256-023-04146-y

155. El-Qushayri AE, Nardone B. Psoriasis exacerbation after COVID-19 vaccines: A brief report of the reported cases. Dermatol Ther. 2022; 35(12): e15900. doi: 10.1111/dth.15900

156. Wu PC, Huang IH, Wang CW, et al. New Onset and Exacerbations of Psoriasis Following COVID-19 Vaccines: A Systematic Review. Am J Clin Dermatol. 2022; 775–799. doi: 10.1007/s40257-022-00721-z

157. Durmaz I, Turkmen D, Altunisik N, et al. Exacerbations of generalized pustular psoriasis, palmoplantar psoriasis, and psoriasis vulgaris after mRNA COVID-19 vaccine: A report of three cases. Dermatol Ther. 2022; 35(4): e15331. doi: 10.1111/dth.15331

158. Dangien A, Darbord D, Chanal J, et al. SARS-CoV-2 vaccination may trigger and exacerbate mucosal lichen planus. J Eur Acad Dermatol Venereol. 2023; 37(9): e1094–e1096. doi: 10.1111/jdv.19144

159. Fukaura R, Takeichi T, Ebata A, et al. COVID-19 infection- and vaccination-related exacerbation of Darier's disease in a single patient. J Dermatol. 2023; 50(6): 833–836. doi: 10.1111/1346-8138.16725

160. Armoni-Weiss G, Sheffer-Levi S, Horev L, et al. Exacerbation of Hailey-Hailey Disease Following SARS-CoV-2 Vaccination. Acta Derm Venereol. 2021; 101(9): adv00554. doi: 10.2340/00015555-3907

161. Apaydin H, Erden A, Güven SC, et al. Effects of anti-SARS-CoV-2 vaccination on safety and disease exacerbation in patients with Behçet syndrome in a monocentric cohort. Int J Rheum Dis. 2022; 25(9): 1068–1077. doi: 10.1111/1756-185X.14387

162. Sprow G, Afarideh M, Dan J, et al. Autoimmune Skin Disease Exacerbations Following COVID-19 Vaccination. Front Immunol. 2022; 13: 899526. doi: 10.3389/fimmu.2022.899526




DOI: https://doi.org/10.24294/ti.v8.i1.3326

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Osamu Ishikawa

License URL: https://creativecommons.org/licenses/by-nc/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.