Keigairengyoto, a traditional Japanese medicine, promotes bacterial clearance by activating innate immune cells in mouse cutaneous infection models

Junichi Koseki, Atsushi Kaneko, Yosuke Matsubara, Kyoji Sekiguchi, Satomi Ebihara, Setsuya Aiba, Kenshi Yamasaki

Article ID: 31
Vol 3, Issue 1, 2019

VIEWS - 1756 (Abstract) 750 (PDF)

Abstract


Prompt elimination of pathogens including bacteria and dead cells prevents the expansion of secondary and prolonged inflammations and tissue damage. Keigairengyoto (KRT) is a traditional Japanese medicine prescribed for dermatoses such as purulent inflammations. Our aim is to clarify the actions of KRT in bacterial clearance and to examine the cell-kinetic profiles of phagocytes. In a mouse cutaneous infection model using living Staphylococcus aureus, KRT drastically reduced the number of bacteria in the infection sites. To evaluate the bacterial clearance, pseudo-infection was induced in mouse ears by intradermal injection of FITC-conjugated dead S. aureus. Biochemical and histological examinations revealed that KRT promoted bacterial clearance at 6 and 24 h post-injection. The numbers and phagocytic activities of neutrophils and macrophages in the ears were evaluated histologically using anti-Ly6G and F4/80 antibodies. KRT reduced bacterial deposition and increased the accumulation of F4/80+ resident macrophages around the lesion site. FACS analysis was performed on single cell suspensions dispersed enzymatically from skin lesions, followed by an investigation of CD11b+Ly6G+ (neutrophils) and CD11b+Ly6G (monocytes/macrophages) cells. KRT increased the mean fluorescent intensity of FITC in CD11b+Ly6Gcells and the number of FITC-positive CD11b+Ly6G+ cells, while KRT did not change the numbers of these cells. To investigate the active constituents of KRT, phagocytosis assay using macrophages was performed, resulting in that some flavonoid glucuronides of KRT derivatives augmented phagocytosis. Collectively, KRT promoted bacterial clearance by enhancing the phagocytic capability of neutrophils and macrophages. KRT may exert unique properties in preventive and therapeutic strategies for skin infectious inflammation.

Keywords


kampo; phagocytosis; resident macrophages; neutrophils; Staphylococcus aureus; flavonoid glucuronide; skin

Full Text:

PDF


References


1. Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol Rev 2012; 249(1): 158–175. doi: 10.1111/j.1600-065X.2012.01146.x.

2. McGuinness WA, Kobayashi SD, DeLeo FR. Evasion of neutrophil killing by Staphylococcus aureus. Pathogens 2016; 5(1). doi: 10.3390/pathogens5010032.

3. Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annu Rev Pathol 2016; 11: 343–364. doi: 10.1146/annurev-pathol-012615-044351.

4. Tay SS, Roediger B, Tong PL, et al. The skin-resident immune network. Curr Dermatol Rep 2014; 3: 13–22. doi: 10.1007/s13671-013-0063-9.

5. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 2014; 14(6): 417–428. doi: 10.1038/nri3683.

6. Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care (New Rochelle) 2012; 1(1): 10–16. doi: 10.1089/wound.2011.0307.

7. Feuerstein R, Seidl M, Prinz M, et al. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. J Immunol 2015; 194(6): 2735–2745. doi: 10.4049/jimmunol.1402566.

8. Kawaii S, Tomono Y, Katase E, et al. Effect of citrus flavonoids on HL-60 cell differentiation. Anticancer Res 1999; 19(2A): 1261–1269.

9. Fung MC, Szeto YY, Leung KN, et al. Effects of biochanin A on the growth and differentiation of myeloid leukemia WEHI-3B (JCS) cells. Life Sci 1997; 61(2): 105–115. doi: 10.1016/S0024-3205(97)00365-2.

10. Yamazaki S, Morita T, Endo H, et al. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma. Cancer Lett 2002; 183(1): 23–30. doi: 10.1016/S0304-3835(02)00113-1.

11. Lim EK, Mitchell PJ, Brown N, et al. Regiospecific methylation of a dietary flavonoid scaffold selectively enhances IL-1beta production following Toll-like receptor 2 stimulation in THP-1 monocytes. J Biol Chem 2013; 288(29): 21126–21135. doi: 10.1074/jbc.M113.453514.

12. Lee J, Kim SL, Lee S, et al. Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages. BMB Rep 2014; 47(7): 382–387. doi: 10.5483/BMBRep.2014.47.7.191.

13. Takahashi T, Kobori M, Shinmoto H, et al. Structure-activity relationships of flavonoids and the induction of granulocytic- or monocytic-differentiation in HL60 human myeloid leukemia cells. Biosci Biotechnol Biochem 1998; 62(11): 2199–2204. doi: 10.1271/bbb.62.2199.

14. Lee SH, Kim JK, Jang HD. Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int J Mol Sci 2014; 15(6): 10605–10621. doi: 10.3390/ijms150610605.

15. Xu L, Khandaker MH, Barlic J, et al. Identification of a novel mechanism for endotoxin-mediated down-modulation of CC chemokine receptor expression. Eur J Immunol 2000; 30(1): 227–235. doi: 10.1002/1521-4141(200001)30:1<227::AID-IMMU227>3.0.CO;2-X.

16. Park E, Lee SM, Jung IK, et al. Effects of genistein on early-stage cutaneous wound healing. Biochem Biophys Res Commun 2011; 410(3): 514–519. doi: 10.1016/j.bbrc.2011.06.013.

17. Emmerson E, Campbell L, Ashcroft GS, et al. The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Mol Cell Endocrinol 2010; 321(2): 184–193. doi: 10.1016/j.mce.2010.02.026.

18. Matsumoto T, Matsubara Y, Mizuhara Y, et al. Plasma pharmacokinetics of polyphenols in a traditional Japanese medicine, jumihaidokuto, which suppresses Propionibacterium acnes-induced dermatitis in rats. Molecules 2015; 20(10): 18031–18046. doi: 10.3390/molecules201018031.

19. Sekiguchi K, Koseki J, Tsuchiya K, et al. Suppression of Propionibacterium acnes-induced dermatitis by a traditional Japanese medicine, jumihaidokuto, modifying macrophage functions. Evid Based Complement Alternat Med 2015; 2015: 439258. doi: 10.1155/2015/439258.

20. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22(6): 709–724. doi: 10.1002/ptr.2362.

21. Kugelberg E, Norstrom T, Petersen TK, et al. Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 2005; 49(8): 3435–3441. doi:

22. 1128/AAC.49.8.3435-3441.2005.

23. Higaki S, Hasegawa Y, Morohashi M, et al. The correlation of Kampo formulations and their ingredients on anti-bacterial activities against Propionibacterium acnes. J Dermatol 1995; 22(1): 4–9. doi: 10.1111/j.1346-8138.1995.tb03332.x.

24. Higaki S, Morimatsu S, Morohashi M, et al. Susceptibility of Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis to 10 Kampo formulations. J Internat Med Res 1997; 25(6): 318–324. doi: 10.1177/030006059702500602.

25. Accarias S, Lugo-Villarino G, Foucras G, et al. Pyroptosis of resident macrophages differentially orchestrates inflammatory responses to Staphylococcus aureus in resistant and susceptible mice. Eur J Immunol 2015; 45(3): 794–806. doi: 10.1002/eji.201445098.

26. LaRock CN, Cookson BT. Burning down the house: Cellular actions during pyroptosis. PLoS Pathog 2013; 9(12): e1003793. doi: 10.1371/journal.ppat.1003793.

27. Koller W, Vetere-Overfield B, Gray C, et al. Failure of fixed-dose, fixed muscle injection of botulinum toxin in torticollis. Clin Neuropharmacol 1990; 13(4): 355–358. doi: 10.1097/00002826-199008000-00011.

28. Robertson CM, Perrone EE, McConnell KW, et al. Neutrophil depletion causes a fatal defect in murine pulmonary Staphylococcus aureus clearance. J Surg Res 2008; 150(2): 278–285. doi: 10.1016/j.jss.2008.02.009.

29. Kaneko A, Matsumoto T, Matsubara Y, et al. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by β-glucuronidase in macrophages. Immun Inflamm Dis 2017. In Press. doi: 10.1002/iid3.163.

30. Flannagan RS, Heit B, Heinrichs DE. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens 2015; 4(4): 826–868. doi: 10.3390/pathogens4040826.

31. Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 2012; 34(2): 237–259. doi: 10.1007/s00281-011-0295-3.

32. Wang BS, Huang GJ, Tai HM, et al. Antioxidant and anti-inflammatory activities of aqueous extracts of Schizonepeta tenuifolia Briq. Food Chem Toxicol 2012; 50(3–4): 526–531. doi: 10.1016/j.fct.2011.12.010.

33. Yang XN, Khan I, Kang SC. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pac J Trop Med 2015; 8(9): 694–700. doi: 10.1016/j.apjtm.2015.07.031.




DOI: https://doi.org/10.24294/ti.v3.i1.31

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Junichi Koseki, Atsushi Kaneko, Yosuke Matsubara, Kyoji Sekiguchi, Satomi Ebihara, Setsuya Aiba, Kenshi Yamasaki

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.