Oxidative enzymes and vitamin E in ovarian cancer: Insights from a case-control study
Vol 7, Issue 2, 2023
VIEWS - 290 (Abstract) 180 (PDF)
Abstract
Studying vitamin E’s antioxidant capabilities and how they relate to oxidative enzymes in the context of ovarian cancer was the focus of this study. A case-control study was conducted, with 100 women with ovarian cancer serving as cases and 30 women in good health serving as controls. Enzyme-linked immunosorbent assay (ELISA) was used to assess serum levels of trypsin, chymotrypsin, pancreatic-type amylase, and vitamin E, while the dimercaptopropanol tributyrate (BALB) method was used to measure lipase levels. Patients with ovarian cancer were shown to have lower levels of chymotrypsin and lipase and higher levels of trypsin and amylase than controls. The two groups had almost the same vitamin E content. According to these findings, oxidative enzymes may have a role in the progression of ovarian cancer by increasing trypsin and amylase and decreasing chymotrypsin and lipase. Although vitamin E was thought to slow the development of gynecologic malignancies, the study found no such impact. Further research with larger study groups is necessary to obtain more robust results.
Keywords
Full Text:
PDFReferences
1. Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Frontiers in Oncology 2013; 3: 256. doi: 10.3389/fonc.2013.00256
2. Xintaropoulou C, Ward C, Wise A, et al. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer 2018; 18(1): 636. doi: 10.1186/s12885-018-4521-4
3. Singh A, Gupta S, Sachan M. Epigenetic biomarkers in the management of ovarian cancer: Current prospectives. Frontiers in Cell and Developmental Biology 2019; 7: 182. doi: 10.3389/fcell.2019.00182
4. Guo S, Lv H, Yan L, Rong F. Hyperamylasemia may indicate the presence of ovarian carcinoma. Medicine 2018; 97(49): e13520. doi: 10.1097/md.0000000000013520
5. Solakidi S, Tiniakos DG, Petraki K, et al. Co-expression of trypsin and tumour-associated trypsin inhibitor (TATI) in colorectal adenocarcinomas. Histology and Histopathology 2003; 18(4): 1181–1188. doi: 10.14670/HH-18.1181
6. Kim KK, Turner R, Khazan N, et al. Role of trypsin and protease-activated receptor-2 in ovarian cancer. PLoS One 2020; 15(5): e0232253. doi: 10.1371/journal.pone.0232253
7. Chymotrypsin. Available online: https://go.drugbank.com/drugs/DB09375 (accessed on 31 October 2023).
8. Ma W, Tang C, Lai L. Specificity of trypsin and chymotrypsin: Loop-motion-controlled dynamic correlation as a determinant. Biophysical Journal 2005; 89(2): 1183–1193. doi: 10.1529/biophysj.104.057158
9. Pirahanchi Y, Sharma S. Biochemistry, lipase. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537346/ (accessed on 10 September 2023).
10. Hou CT, Shimada Y. Lipases. In: Encyclopedia of Microbiology. Elsevier; 2009. pp. 385–392.
11. Seyama K, Nukiwa T, Takahashi K, et al. Amylase mRNA transcripts in normal tissues and neoplasms: The implication of different expressions of amylase isogenes. Journal of Cancer Research and Clinical Oncology 1994; 120(4): 213–220. doi: 10.1007/BF01372559
12. Heinonen PK, Koskinen T, Tuimala R. Serum levels of vitamins A and E in women with ovarian cancer. Archives of Gynecology 1985; 237(1): 37–40. doi: 10.1007/BF02133950
13. Alkhenizan A, Hafez K. The role of vitamin E in the prevention of cancer: A meta-analysis of randomized controlled trials. Annals of Saudi Medicine 2007; 27(6): 409–414. doi: 10.5144/0256-4947.2007.409
14. Heinrich HC, Gabbe EE, Icagić F. Immunoreactive serum trypsin in diseases of the pancreas. Klinische Wochenschrift 1979; 57(22): 1237–1238. doi: 10.1007/BF01489252
15. Miyata S, Miyagi Y, Koshikawa N, et al. Stimulation of cellular growth and adhesion to fibronectin and vitronectin in culture and tumorigenicity in nude mice by overexpression of trypsinogen in human gastric cancer cells. Clinical & Experimental Metastasis 1998; 16(7): 613–621. doi: 10.1023/A:1006576313979
16. Paju A, Vartiainen J, Haglund C, et al. Expression of trypsinogen-1, trypsinogen-2, and tumor-associated trypsin inhibitor in ovarian cancer: Prognostic study on tissue and serum. Clinical Cancer Research 2004; 10(14): 4761–4768. doi: 10.1158/1078-0432.CCR-0204-03
17. Soreide K, Janssen E, Körner H, Baak J. Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. The Journal of Pathology 2006; 209(2): 147–156. doi: 10.1002/path.1999
18. Peregrina-Sandoval J, del Toro-Arreola S, Oceguera-Villanueva A, et al. Trypsin proteolytic activity in cervical cancer and precursor lesions. International Journal of Clinical and Experimental Pathology 2017; 10(5): 5587–5593.
19. Hedström J, Haglund C, Haapiainen R, Stenman UH. Serum trypsinogen-2 and trypsin-2-α1-antitrypsin complex in malignant and benign digestive-tract diseases. Preferential elevation in patients with cholangiocarcinomas. International Journal of Cancer 1996; 66(3): 326–331. doi: 10.1002/(SICI)1097-0215(19960503)66:3<326::AID-IJC10>3.0.CO;2-9
20. Chymotrypsin. Available online: https://healthmatters.io/understand-blood-test-results/chymotrypsin (accessed on 31 October 2023).
21. Wang H, Sha W, Liu Z, Chi CW. Effect of chymotrypsin C and related proteins on pancreatic cancer cell migration. Acta Biochimica et Biophysica Sinica 2011; 43(5): 362–371. doi: 10.1093/abbs/gmr022
22. Rosendahl J, Witt H, Szmola R, et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nature Genetics 2008; 40(1): 78–82. doi: 10.1038/ng.2007.44
23. Lipase. Available online: https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=lipase (accessed on 31 October 2023).
24. What to know about lipase tests and the pancreas. Available online: https://www.medicalnewstoday.com/articles/322201#risks-of-atypical-results (accessed on 12 October 2023).
25. Amylase (blood). Available online: https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=amylase_blood (accessed on 31 October 2023).
26. Lam R, Muniraj T. Hyperamylasemia.; 2022. https://pubmed.ncbi.nlm.nih.gov/32644699/ (accessed on 15 August 2023).
27. Weitzel JN, Pooler PA, Mohammed R, et al. A unique case of breast carcinoma producing pancreatic-type isoamylase. Gastroenterology 1988; 94(2): 519–520. doi: 10.1016/0016-5085(88)90447-7
28. Zhang J, Zhang L, Pan S, et al. Amylase: Sensitive tumor marker for amylase-producing lung adenocarcinoma. Journal of Thoracic Disease 2013; 5(4): E167–E169. doi: 10.3978/j.issn.2072-1439.2013.08.37
29. Hanafy HM, Gursel EO, Veenema RJ. Increased serum amylase levels in prostatic diseases. Urology 1973; 1(4): 372–373. doi: 10.1016/0090-4295(73)90292-6
30. Kawakita T, Sasaki H, Hoshiba T, et al. Amylase-producing ovarian carcinoma: A case report and a retrospective study. Gynecologic Oncology Case Reports 2012; 2(3): 112–114. doi: 10.1016/j.gynor.2012.06.002
31. Zakrzewska I, Pietryńczak M. The activity of alpha-amylase and its salivary isoenzymes in serum and urine of patients with neoplastic diseases of female reproductive organs. Roczniki Akademii Medycznej w Białymstoku 1996; 41(2): 492–498.
32. Amylase test. Available online: https://medlineplus.gov/lab-tests/amylase-test/ (accessed on 31 October 2023).
33. Ueda M, Araki T, Shiota T, Taketa K. Age and sex-dependent alterations of serum amylase and isoamylase levels in normal human adults. Journal of Gastroenterology 1994; 29(2): 189–191. doi: 10.1007/BF02358681
34. Kang JU, Koo SH, Kwon KC, Park JW. AMY2A: A possible tumor-suppressor gene of 1p21.1 loss in gastric carcinoma. International Journal of Oncology 2010; 36(6): 1429–1435.
35. Alpha-Tocopherol. Available online: https://healthmatters.io/understand-blood-test-results/alpha-tocopherol-genova (accessed on 31 October 2023).
36. Vitamin E (tocopherol) test. Available online: https://medlineplus.gov/lab-tests/vitamin-e-tocopherol-test/ (accessed on 31 October 2023).
37. Torun AM, Akgül S, Sargin H. Serum vitamin E level in patients with breast cancer. Journal of Clinical Pharmacy and Therapeutics 1995; 20(3): 173–178. doi: 10.1111/j.1365-2710.1995.tb00645.x
38. Miyamoto H, Araya Y, Ito M, et al. Serum selenium and vitamin E concentrations in families of lung cancer patients. Cancer 1987; 60(5): 1159–1162. doi: 10.1002/1097-0142(19870901)60:5<1159::aid-cncr2820600539>3.0.co;2-q
39. Battisti C, Formichi P, Tripodi SA, et al. Vitamin E serum levels and gastric cancer: Results from a cohort of patients in Tuscany, Italy. Cancer Letters 2000; 151(1): 15–18. doi: 10.1016/S0304-3835(99)00392-4
40. Marco N, Gimferrer E, Mestres J, et al. Vitamin E serum levels in patients with leukemia, lymphoma and myeloma. European Journal of Epidemiology 1997; 13(7): 853–854. doi: 10.1023/A:1007346907864
41. Heinonen PK, Kuoppala T, Koskinen T, Punnonen R. Serum vitamins A and E and carotene in patients with gynecologic cancer. Archives of Gynecology and Obstetrics 1987; 241(3): 151–156. doi: 10.1007/BF00931311
42. Willett WC, Polk BF, Underwood BA, et al. Relation of serum vitamins a and E and carotenoids to the risk of cancer. The New England Journal of Medicine 1984; 310(7): 430–434. doi: 10.1056/NEJM198402163100705
DOI: https://doi.org/10.24294/ti.v7.i2.2649
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Waseem Yousif M. AL-dulaimy, Ebtehal Sabri Mohammed, Saja F. Hassuby, Mohammed Kadhom
License URL: https://creativecommons.org/licenses/by-nc/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.