References
de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. The Lancet Neurology 2006; 5(6): 525–535. doi: 10.1016/S1474-4422(06)70471-9
Mutch WJ, Dingwall-Fordyce I, Downie AW, et al. Parkinson’s disease in a Scottish city. British Medical Journal (Clinical Research Ed.) 1986; 292(6519): 534–536. doi: 10.1136/bmj.292.6519.534
Braak H, Braak E. Pathoanatomy of Parkinson’s disease. Journal of Neurology 2000; 247(S2): II3–II10. doi: 10.1007/PL00007758
Dauer W, Przedborski S. Parkinson’s disease: Mechanisms and models. Neuron 2003; 39(6): 889–909. doi: 10.1016/S0896-6273(03)00568-3
Prasath N, Pandi V, Manickavasagam S, Ramadoss P. A comparative and comprehensive study of prediction of parkinson’s disease. Indonesian Journal of Electrical Engineering and Computer Science 2021; 23(3): 1748–1760. doi: 10.11591/ijeecs.v23.i3.pp1748-1760
Ebrahimi A, Ahmadi H, Ghasrodashti ZP, et al. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: A comprehensive review. Bosnian Journal of Basic Medical Sciences 2021; 21(6): 672.
Lyons KE, Pahwa R. The impact and management of nonmotor symptoms of Parkinson’s disease. American Journal of Managed Care 2011; 17(12): S308.
Brown TP, Rumsby PC, Capleton AC, et al. Pesticides and Parkinson’s disease—Is there a link? Environmental Health Perspectives 2006; 114(2): 156–164. doi: 10.1289/ehp.8095
Lees AJ. Hardy J, Revesz T. Parkinson’s disease. Lancet 2009; 373(9680): 2055–2066. doi: 10.1016/S0140-6736(09)60492-X
Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence and distribution of parkinsonism in Olmsted County, Minnesota, 1976–1990. Neurology 1999; 52(6): 1214. doi: 10.1212/wnl.52.6.1214
Grandinetti A, Morens DM, Reed D, MacEachern D. Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson’s disease. American Journal of Epidemiology 1994; 139(12): 1129–1138. doi: 10.1093/oxfordjournals.aje.a116960
Dixit S, Bohre K, Singh Y, et al. A comprehensive review on AI-enabled models for Parkinson’s disease diagnosis. Electronics 2023; 12(4): 783. doi: 10.3390/electronics12040783
Hernán MA, Zhang SM, Rueda-DeCastro AM, et al. Cigarette smoking and the incidence of Parkinson’s disease in two prospective studies. Annals of Neurology 2001; 50(6): 780–786. doi: 10.1002/ana.10028
Hernán MA, Takkouche B, Caamaño-Isorna F, Gestal-Otero JJ. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Annals of Neurology 2002; 52(3): 276–284. doi: 10.1002/ana.10277
Ritz B, Ascherio A, Checkoway H, et al. Pooled analysis of tobacco use and risk of Parkinson disease. Archives of Neurology 2007; 64(7): 990–997. doi: 10.1001/archneur.64.7.990
Ileșan RR, Cordoș CG, Mihăilă LI, et al. Proof of concept in artificial-intelligence-based wearable gait monitoring for Parkinson’s disease management optimization. Biosensors 2022; 12(4): 189. doi: 10.3390/bios12040189
Breckenridge CB, Berry C, Chang ET, et al. Association between Parkinson’s disease and cigarette smoking, rural living, well-water consumption, farming and pesticide use: Systematic review and meta-analysis. PLoS One 2016; 11(4): e0151841. doi: 10.1371/journal.pone.0151841
Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000; 283(20): 2674–2479. doi: 10.1001/jama.283.20.2674
Chen JF, Xu K, Petzer JP, et al. Neuroprotection by caffeine and A (2A) adenosine receptor inactivation in a model of Parkinson’s disease. The Journal of Neuroscience 2001; 21(10): RC143. doi: 10.1523/JNEUROSCI.21-10-j0001.2001
Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Annals of Neurology 2012; 72(6): 893–901. doi: 10.1002/ana.23687
Noviandy TR, Maulana A, Idroes GM, et al. Integrating Genetic Algorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer’s Disease Drug Discovery. Malacca Pharmaceutics 2023; 1(2): 48–54.
Fondell E, O’Reilly ÉJ, Fitzgerald KC, et al. Intakes of caffeine, coffee and tea and risk of amyotrophic lateral sclerosis: Results from five cohort studies. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2015; 16(5–6): 366–371. doi: 10.3109/21678421.2015.1020813.
Xu K, Xu Y, Brown-Jermyn D, et al. Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Journal of Neuroscience 2006; 26(2): 535–541. doi: 10.1523/JNEUROSCI.3008-05.2006
Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Research Reviews 2018; 42: 72–85. doi: 10.1016/j.arr.2017.12.007
Schulte C, Gasser T. Genetic basis of Parkinson’s disease: Inheritance, penetrance, and expression. The Application of Clinical Genetics 2011; 4: 67–80. doi: 10.2147/tacg.s11639
Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 2045–2047. doi: 10.1126/science.276.5321.2045
Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. The Lancet Neurology 2008; 7(7): 583–590. doi: 10.1016/S1474-4422(08)70117-0
Pange SS, Patwekar M, Patwekar F, et al. A potential notion on alzheimer’s disease: nanotechnology as an alternative solution. Journal of Nanomaterials 2022; 2022: 6910811. doi: 10.1155/2022/6910811
Chai C, Lim KL. Genetic insights into sporadic Parkinson’s disease pathogenesis. Current Genomics 2013; 14(8): 486–501. doi: 10.2174/1389202914666131210195808
Chinta SJ, Lieu CA, DeMaria M, et al. Environmental stress, ageing and glial cell senescence: A novel mechanistic link to Parkinson’s disease? Journal of Internal Medicine 2013; 273(5): 429–436. doi: 10.1111/joim.12029
Goldman JG, Bernard BA. Cognitive assessments and Parkinson’s disease. Encyclopedia of Movement Disorders 2010; 1: 232. doi: 10.1016/B978-0-12-374105-9.00168-4
Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Research Reviews 2014; 14: 19–30.
Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. The Journal of Clinical Investigation 2003; 111(2): 145–151. doi: 10.1172/JCI17575
Sherer TB, Chowdhury S, Peabody K, Brooks DW. Overcoming obstacles in Parkinson’s disease. Movement Disorders 2012; 27(13): 1606–1611. doi: 10.1002/mds.25260
Macphee GJ, Stewart DA. Parkinson’s disease. Reviews in Clinical Gerontology 2001; 11(1): 33–49. doi: 10.1017/s0959259801011145
Savica R, Grossardt BR, Bower JH, et al. Risk factors for Parkinson’s disease may differ in men and women: An exploratory study. Hormones and Behavior 2013; 63(2): 308–314. doi: 10.1016/j.yhbeh.2012.05.013
Jankovic J, Hurtig H, Dashe J. Etiology and pathogenesis of Parkinson Disease. Available online: https://www.uptodate.com/contents/epidemiology-pathogenesis-and-genetics-of-parkinson-disease (accessed on 26 October 2023).
Gazewood JD, Richards DR, Clebak K. Parkinson disease: An update. American Family Physician 2013; 87(4): 267–273.
Fahn S. Parkinson’s disease: 10 years of progress, 1997–2007. Movement Disorders 2010; 25(S1): S2–S14. doi: 10.1002/mds.22796
Davie CA. A review of Parkinson’s disease. British Medical Bulletin 2008; 86(1): 109–127. doi: 10.1093/bmb/ldn013
Mallucci GR. Prion neurodegeneration: starts and stops at the synapse. Prion 2009; 3(4): 195–201. doi: 10.4161/pri.3.4.9981
Palop JJ, Mucke L. Amyloid-β-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nature Neuroscience 2010; 13(7): 812–818. doi: 10.1038/nn.2583
Lavedan C, Leroy E, Dehejia A, et al. Identification, localization and characterization of the human γ-synuclein gene. Human Genetics 1998; 103: 106–112. doi: 10.1007/s004390050792
Simon-Sanchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nature Genetics 2009; 41(12): 1308–1312. doi: 10.1038/ng.487
Fortin DL, Nemani VM, Voglmaier SM, et al. Neural activity controls the synaptic accumulation of α-synuclein. Journal of Neuroscience 2005; 25(47): 10913–10921. doi: 10.1523/JNEUROSCI.2922-05.2005
Burré J, Sharma M, Tsetsenis T, et al. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010; 329(5999): 1663–1667. doi: 10.1126/science.1195227
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257–273. doi: 10.1016/j.neuron.2014.12.007
Quilty MC, King AE, Gai WP, et al. Alpha-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Experimental Neurology 2006; 199(2): 249–256. doi: 10.1016/j.expneurol.2005.10.018
Singleton AB, Farrer M, Johnson J, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 2003; 302(5646): 841. doi :10.1126/science.1090278
Fischer EF, Victor B, Robinson D, et al. Coffee consumption and health impacts: A brief history of changing conceptions. In: Coffee: Consumption and Health Implications. The Royal Society of Chemistry; 2019.
Schulz-Schaeffer WJ. The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathologica 2010; 120(2): 131–143. doi: 10.1007/s00401-010-0711-0
Piccoli G, Condliffe SB, Bauer M, et al. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. Journal of Neuroscience 2011; 31(6): 2225–2237. doi: 10.1523/jneurosci.3730-10.2011
Shin N, Jeong H, Kwon J, et al. LRRK2 regulates synaptic vesicle endocytosis. Experimental Cell Research 2008; 314(10): 2055–2065. doi: 10.1016/j.yexcr.2008.02.015
Asanuma M, Miyazaki I, Ogawa N. Dopamine-or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotoxicity Research 2003; 5(3): 165–176. doi: 10.1007/bf03033137
Conway KA, Rochet JC, Bieganski RM, Lansbury PT. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 2001; 294(5545): 1346–1349. doi: 10.1126/science.1063522
Leong SL, Cappai R, Barnham KJ, Pham CL. Modulation of α-synuclein aggregation by dopamine: A review. Neurochemical Research 2009; 34(10): 1838–1846. doi: 10.1007/s11064-009-9986-8
Perier C, Villa M. Park DS. Programed cell death in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine 2012; 2(2): a009332. doi: 10.1101/cshperspect.a009332
Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nature Reviews Neuroscience 2008; 9(11): 826–838. doi: 10.1038/nrn2499
Keane PC, Kurzawa M, Blain PG, Morris CM. Mitochondrial dysfunction in Parkinson’s disease. Parkinson’s Disease 2011; 2011: 1–18. doi: 10.4061/2011/716871
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979–980. doi: 10.1126/science.6823561
Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience 2000; 3(12): 1301–1306. doi :10.1038/81834
Cassarino DS, Fall CP, Swerdlow RH, et al. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1997; 1362(1): 77–86. doi: 10.1016/S0925-4439(97)00070-7
McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38(8): 1285. doi: 10.1212/WNL.38.8.1285
Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson’s disease. Trends in Pharmacological Sciences 2003; 24(8): 395–401. doi: 10.1016/S0165-6147(03)00176-7
Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson’s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 2003; 53(S3): S49–S60. doi: 10.1002/ana.10481
Hirsch EC, Hunot S, Hartmann A. Neuroinflammatory processes in Parkinson’s disease. Parkinsonism & Related Disorders 2005; 11: S9–S15. doi: 10.1016/j.parkreldis.2004.10.013
Am OB, Amit T, Youdim MB. Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neuroscience Letters 2004; 355(3): 169–172. doi: 10.1016/j.neulet.2003.10.067
Arıca B, Kaş HS, Moghdam A, et al. Carbidopa/levodopa-loaded biodegradable microspheres: In vivo evaluation on experimental Parkinsonism in rats. Journal of Controlled Release 2005; 102(3) :689–697. doi: 10.1016/j.jconrel.2004.11.004
Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson’s disease. Progress in Neurobiology 2007; 81(1): 29–44. doi: 10.1016/j.pneurobio.2006.11.009
Hindle JV. Ageing, neurodegeneration and Parkinson’s disease. Age and Ageing 2010; 39(2): 156–161. doi: 10.1093/ageing/afp223
Jin W, Luo Q. When artificial intelligence meets PD-1/PD-L1 inhibitors: Population screening, response prediction and efficacy evaluation. Computers in Biology and Medicine 2022; 145: 105499. doi: 10.1016/j.compbiomed.2022.105499
Copyright (c) 2023 Mohsina Patwekar, Faheem Patwekar, Syed Sanaullah, Daniyal Shaikh, Ustad Almas, Rohit Sharma