Sirtuins in wound healing

Akihiro Aioi

Article ID: 122
Vol 3, Issue 2, 2019

VIEWS - 911 (Abstract) 587 (PDF)

Abstract


Sirtuins (SIRTs) are initially recognized as NAD+-dependent histone deacetylase. SIRTs attract attention for their role as calorie restriction-induced “longevity proteins” to be expected to extend human life span and to promote health. As advancing studies, SIRTs have been recognized as cell signaling regulators which contribute to anti-inflammation, cell differentiation and so on. Therefore, SIRTs are supposed to affect wound healing which is comprised highly orchestrated complex four phases: hemostasis, inflammation, tissue formation and tissue remodeling. This review highlights the roles of SIRTs in wound healing process and provides a foundation and impetus for future basic and clinical research.


Keywords


sirtuin; wound healing; anti-inflammation; re-epithelialization

Full Text:

PDF


References


1. Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403(6771): 795–800. doi: 10.1038/35001622.

2. Sinclair DA, Guarente L. Extrachromosomal rDNA circles—A cause of aging in yeast. Cell 1997; 91(7): 1033–1042. doi: 10.1016/S0092-8674(00)80493-6.

3. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13(19): 2570–2580. doi: 10.1101/gad.13.19.2570.

4. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410(6825): 227–30. doi: 10.1038/35065638.

5. Wang Y, Tissenbaum HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 2006; 127(1): 48–56. doi: 10.1016/j.mad.2005.09.005.

6. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101(45): 15998–16003. doi: 10.1073/pnas.0404184101.

7. Colman R, Anderson R, Johnson S, et al. Caloric restriction delays disease onset and mortality in rhesus monkey. Science 2009; 325(5937): 201–204. doi: 10.1126/science.1173635.

8. Guarente L, Picard F. Calorie restriction—The SIR2 connection. Cell 2005; 120(4): 473–482. doi: 10.1016/j.cell.2005.01.029.

9. Haigis M, Mostoslavsky R, Haigis K, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126(5): 941–954. doi: 10.1016/j.cell.2006.06.057.

10. Singer AJ, Clark RAF. Cutaneous wound healing. N Eng J Med 1999; 341(10): 738–746. doi: 10.1056/NEJM199909023411006.

11. Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound. Wound Rep Reg 2008; 16(5): 585–601. doi: 10.1111/j.1524-475X.2008.00410.x.

12. Shen C, Sun L, Zhu N, et al. Lindlin-1 contributes to EGF-induced re-epithelialization in skin wound healing. Int J Mol Med 2017; 39(4): 949–959. doi: 10.3892/ijmm.2017.2911.

13. Meyer M, Muller AK, Yang J, et al. FGF receptors 1and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J Cell Sci 2012; 125(Pt 23): 5690–5701. doi: 10.1242/jcs.108167.

14. Takamiya M, Saigusa K, Nakayashiki N, et al. Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination. Int J Legal Med 2003; 117(1): 46–50. doi: 10.1007/s00414-002-0354-3.

15. Zhang C. Tan CK. McFarlane C. et al. Myostatin-null mice exhibit delay skin wound healing through the blockade of transforming growth factor- singnaling by decorin. Am J Cell Physiol 2012; 302(8): C1213–C1225. doi: 10.1152/ajpcell.00179.2011.

16. Ishida Y, Kondo T, Takayasu T, et al. The essential involvement of cross-talk between IFN-g and TGF-b in the skin wound-healing precess. J Immunol 2004; 172(3): 1848–1855. doi: 10.4049/jimmunol.172.3.1848.

17. Ashcroft GS, Jeoung MJ, Ashworth JJ, et al. Tumor necrosis factor-alpha (TNF-a) is a therapeutic target for impaired cutaneous wound healing. Wound Rep Reg 2012; 20(1): 38–49. doi: 10.1111/j.1524-475X.2011.00748.x.

18. Grellner W. Time-dependent immunohistochemical detection of proinflammaory cytokines (IL-1b, IL-6, TNF-a) in human skin wounds. Forensic Sci Int 2002; 130(2–3): 90–96. doi: 10.1016/S0379-0738(02)00342-0.

19. Grellner W, George T, Wilske J. Quantitative analysis of proinflammatory cytokines (IL-1b, IL-6, TNF-a) in human skin wounds. Forensic Sci Int 2000; 113(1–3): 251–264. doi: 10.1016/S0379-0738(00)00218-8.

20. Ishida Y, Kondo T, Kimura A, et al. Absence of IL-1receptor antagonist impaired wound healing along with aberrant NF-B activation and a reciprocal suppression of TGF- signal pathway. J Immunol 2006; 176(9): 5598–5606. doi: 10.4049/jimmunol.176.9.5598.

21. Gallucci RM, Sugawara T, Yucesoy B, et al. Interleukin-6 treatment augments cutaneous wound healing in immunosuppressed mice. J Interferon Cytokine Res 2001; 21(8): 603–609. doi: 10.1089/10799900152547867.

22. Gallucci RM, Sloan DK, Heck JM, et al. Interleukin 6 indirectly induces keratinocyte migration. J Invest Dermatol 2004; 122(3): 764–772. doi: 10.1111/j.0022-202X.2004.22323.x.

23. McFarland-Mancini MM, Funk HM, Pluch AM, et al. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J Immunol 2010; 184(12): 7219–7228. doi: 10.4049/jimmunol.0901929.

24. Kondo T, Oshima T, Mori R, et al. Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 2002; 116(2): 87–91. doi: 10.1007/s004140100260.

25. Engelhardt E, Toksoy A, Goebeler M, et al. Chemokines IL-8, GRO, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound-healing. Am J Pathol 1998; 153(6): 1849–1860. doi: 10.1016/S0002-9440(10)65699-4.

26. Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol 2008; 180(1): 569–579. doi: 10.4049/jimmunol.180.1.569.

27. Aibina JE, Mills CD, Henry WL, et al. Temporal expression of different pathways of l-arginine metabolism in healing wounds. J Immunol 1990; 144(10): 3877–3880.

28. Komine M, Rao LS, Kaneko T, et al. Inflammatory versus proliferative process in epidermis. Tumor necrosis factor-a induces K6b keratin synthesis through a transcriptional complex containing NFB and C/EBP. J Biol Chem 2000; 275(41): 32077–32088. doi: 10.1074/jbc.M001253200.

29. Tang A, Gilchrest BA. Regulation of keratinocyte growth factor gene expression in human skin fibroblasts. J Dermatol Sci 1996; 11(1): 41–50. doi: 10.1016/0923-1811(95)00418-1.

30. Sato M, Sawamura D, Ina S, et al. In vivo introduction of the inteleukin-6 gene into human keratinocyte: Induction of epidermal proliferation by the fully spliced form of interleukin-6, but not by the alternatively spliced form. Arch Dermatol Res 1999; 291(7–8): 400–404. doi: 10.1007/s004030050429.

31. Brauchle M, Angermeyer K, Hubner G, et al. Large induction of keratinocyte growth factor expression by serum growth factors and proinflammatory cytokines in cultured fibroblasts. Oncogene 1994; 9(11): 3199–3204.

32. Unemori EN, Hibbs MS, Amento EP. Constitutive expression of 92-kD gelatinase (type V collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines. J Clin Invest 1991; 88(5): 1656–1662. doi: 10.1172/JCI115480.

33. Napetschnig J, Wu H. Molecular basis of NF-kB signaling. Annu Rev Biophys 2013; 42: 443–468. doi: 10.1146/annurev-biophys-083012-130338.

34. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23(12): 2369–2380. doi: 10.1038/sj.emboj.7600244.

35. Zhu X, Liu Q, Wang M, et al. Activation of Sirt1 by resveratrol inhibit TNF-a induced inflammation in fibroblasts. PloS One 2011; 6(11): e27081. doi: 10.1371/journal.pone.0027081.

36. Schaffer MR, Tantry U, Barbul A, et al. Nitric oxide metabolism in wounds. J Surg Res 1997; 71(1): 25–31. doi: 10.1006/jsre.1997.5137.

37. Frank S, Madlener M, Pfeilschiter J, et al. Induction of inducible nitric oxide synthase and its corresponding tetrahydrobiopterin-cofactor-synthesizing enzyme GTP-cyclohydrolase I during cutaneous wound healing. J Invest Dermatol 1998; 111(6): 1058–1064. doi: 10.1046/j.1523-1747.1998.00434.x.

38. Reichner JS, Meszaros AJ, Louis CA, et al. Molecular and metabolic evidence for the restricted expression of inducible nitric oxide synthase in healing wounds. Am J Pathol 1999; 154(4): 1097–1104. doi: 10.1016/S0002-9440(10)65362-X.

39. Paulsen SM, Wurster SH, Nanney LB. Expression of inducible nitric oxide synthase in human burn wounds. Wound Rep Reg 1998; 6(2): 142–148. doi: 10.1046/j.1524-475X.1998.60208.x.

40. Rizk M, Witte MB, Barbul A. Nitric oxide and wound healing. World J Surg 2004; 28(3): 301–306. doi: 10.1007/s00268-003-7396-7.

41. Mattagajasingh I, Kim CK, Naqvi A, et al. SIRT promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci 2007; 104(37): 14855–14860. doi: 10.1073/pnas.0704329104.

42. Valente S, Mellini P, Spallotta F, et al. 1,4-Dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function and exhibit inhibition of proliferation in cancer cells. J Med Chem 2016; 59(4): 1471–1491. doi: 10.1021/acs.jmedchem.5b01117.

43. Spallota F, Cencioni C, Straino S, et al. A nitric oxide-dependent crosstalk between class I and II histone deacetylases accelerates skin repair. J Biol Chem 2013; 288(16): 11004–11012. doi: 10.1074/jbc.M112.441816.

44. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: Molecular and cellular mechanisms. J Invest Dermatol 2007; 127(3): 514–525. doi: 10.1038/sj.jid.5700701.

45. Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: Facts and hypotheses for multi-professional considerations in predictive, preventive and personalized medicine. EPMA J 2017; 8(1): 23–33. doi: 10.1007/s13167-017-0081-y.

46. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173(2): 370–378. doi: 10.1111/bjd.13954.

47. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis 2004; 17(2): 91–96. doi: 10.1097/00001432-200404000-00004.

48. Wolcott RD, Rhoads DD, Dowd SE. Biofilm and chronic wound inflammation. J Wound Care 2008; 17(8): 333–341. doi: 10.12968/jowc.2008.17.8.30796.

49. Thomson CH. Biofilms: Do they affect wound healing? Int Wound J 2011; 8(1): 63–67. doi: 10.1111/j.1742-481X.2010.00749.x.

50. Gould L, Abadir P, Brem H, et al. Chronic wound repair and healing in older adults: Current status and future research. J Am Geriartr Soc 2015; 63(3): 427–438. doi: 10.1111/jgs.13332.

51. Kim KS, Park HK, Lee JW, et al. Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microsc Rec Tech 2015; 78(4): 277–282. doi: 10.1002/jemt.22472.

52. Agren MS, Steenfos HH, Dabelsteen S, et al. Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers is ulcer-age dependent. J Invest Dermato 1999; 112(4): 463–469. doi: 10.1046/j.1523-1747.1999.00549.x.

53. Kim BC, Kim HT, Park SH, et al. Fibroblasts from chronic wounds show altered TGF--signaling and decreased TGF- type II receptor expression. J Cell Physiol 2003; 195(3): 331–336. doi: 10.1002/jcp.10301.

54. Nakamura Y, Vuppusetty C, Wada H, et al. A protein deacetylase is a negative regulator of metalloproteinase-9. FASEB J 2009; 23(9): 2810–2819. doi: 10.1096/fj.08-125468.

55. Lee JS, Park KY, Min HG, et al. Negative regulation of stress-induced matrix metalloproteinase-9 by Sirt1 in skin tissue. Exp Dermatol 2010; 19(12): 1060–1066. doi: 10.1111/j.1600-0625.2010.01129.x.

56. Kang L, Hu J, Weng Y, et al. Sirtuin 6 prevents matrix degradation through inhibition of the NF-B pathway intervertebral disc degeneration. Exp Cell Res 2017; 352(2): 322–332. doi: 10.1016/j.yexcr.2017.02.023.

57. Thandavaryan RA, Garikipati VNS, Joladarashi D, et al. Sirtuin-6 deficiency exacerbates diabetes-induced impairment of wound healing. Exp Dermatol 2015; 24(10): 773–778. doi: 10.1111/exd.12762.

58. Zhang C, Lim J, Jeon HH, et al. FOXO1 deletion in keratinocytes improves diabetic wound healing through MMP9 regulation. Sci Rep 2017; 7(1): 10565. doi: 10.1038/s41598-017-10999-3.

59. Serravallo M, Jagdeo J, Glick SA, et al. Sirtuins in dermatology: Applications for future research and therapeutics. Arch Dermatol Res 2013; 305(4): 269–282. doi: 10.1007/s00403-013-1320-2.

60. Villalba JM, Alcaın FJ. Sirtuin activators and inhibitors. Biofactors 2012; 38(5): 349–359. doi: 10.1002/biof.1032.

61. Zhao P, Sui BD, Liu N, et al. Anti-aging pharmacology in cutaneous wound healing: Effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 2017; 16(5): 1083–1093. doi: 10.1111/acel.12635.

62. Lephart E, Sommerfeldt JM, Andrus MB. Resveratrol: Influences on gene expression in human skin. J Func Foods 2014; 10: 377–384. doi: 10.1016/j.jff.2014.07.017.

63. Wahab A, Gao K, Jia C, et al. Significance of resveratrol in clinical management of chronic diseases. Molecules 2017; 22(8): 1329. doi: 10.3390/molecules22081329.




DOI: https://doi.org/10.24294/ti.v3.i2.122

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Akihiro Aioi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.