Peroxisome Proliferator-Activated Receptors (PPARs) Activation as Therapeutic Targets in Skin Inflammation

Akihiro Aioi

Article ID: 1063
Vol 4, Issue 2, 2020

VIEWS - 948 (Abstract) 603 (PDF)

Abstract


Peroxisome proliferator-activated receptors (PPARs) are fatty acid activated transcription factors that belong to the nuclear hormone receptor family. They are initially known as transcriptional regulators of lipid and glucose metabolism, although further evidence has also been accumulated for other functions. Due to the nature of all PPAR isotypes which are expressed and exert effects by regulating the functions of cell types residing and infiltrating in the skin, PPARs represent a major research target for the understanding and treatment of many skin diseases. Atopic dermatitis (AD) is a chronic and relapsing disease characterized by skin barrier dysfunction and immune dysregulation. Skin barrier disturbance is one of the exacerbation factors of AD, due to facile penetration of molecules such as antigens. From the aspect of immune dysregulation, innate and acquired immunity including cell proliferation, cell differentiation, and cytokine network are involved in the pathogenesis. In this review, the role of PPAR in AD and the possibility of its agonist for the treatment of AD are discussed.


Keywords


Peroxisome Proliferator-activated Receptors; Skin; Inflammation; Atopic Dermatitis

Full Text:

PDF


References


1. Issemann I, Green S. Activation of a member of the steroid receptor superfamily by peroxisome proliferator. Nature 1990; 347:645-649 doi: 10.1038/347645a0

2. Sher T, Hua-Fang Y, McBride O. et al. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 1993; 32:5598-5604 doi: 10.1021/bi00072a015

3. Lamichane S, Lamichane BD, Kwon SM. Pivotal roles of peroxisome proliferator-activated receptors (PPARs) and their signal cascade for cellular and whole-body energy homeostasis. Intl J Mol Sci 2018; 19(4):949 doi: 10.3390/ijms19040949

4. Westergaard M, Henningsen J, Svendsen ML. et al. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid. J. Invest. Dermatol. 2001; 116(5):702–712 doi: 10.1046/j.1523-1747.2001.01329.x

5. Proksch E, Folster-Holst R, Jensen JM, et al. Skin barrier function, epidermal proliferation and differentiation in eczema. J Dermatol Sci 2006; 43(3):159-169 doi: 10.1016/j.jdermsci.2006.06.003

6. Bieber T. Atopic dermatitis. Ann Dermatol 2010; 22(2):125-137 doi: 10.5021/ad.2010.22.2.125

7. McGirt LY, Beck LA. Innate immune defects in atopic dermatitis. J Allergy Clin Immunol 2006; 118(1):202-208 doi: 10.1016/j.jaci.2006.04.033

8. Ong PY, Leung DY. Immune dysregulation in atopic dermatitis. Curr Allergy and Asthma Reports 2006; 6(5):384–389 doi: 10.1007/s11882-996-0008-5

9. Aral M, Arican O, Gul M, et al. The Relationship between serum levels of total IgE, IL-18, IL-12, IFN-γ and disease severity in children with atopic dermatitis. Mediators Inflamm. 2006; 2006(4):1-4 doi: 10.1155/MI/2006/73098

10. Maa L, Xueb HB, Guan XH, et al. Possible role of Th17 cells and IL-17 in the pathogenesis of atopic dermatitis in northern China. J Dermatol Sci 2012; 68(1):66-68 doi: 10.1016/j.jdermsci.2012.07.009

11. Nakahara T, Morimoto H, Murakami N, et al. Mechanistic insights into topical tacrolimus for the treatment of atopic dermatitis. Pediatr Allery Immunol 2018; 29(3):233-238 doi: 10.1111/pai.12842

12. Montes-Torres A, Llamas-Velasco M, Pérez-Plaza A, et al. Biological treatments in atopic dermatitis. J Clin Med 2015; 4(4):593-613 doi; 10.3390/jcm4040593

13. Beck LA, Thaçi D, Hamilton JD, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 2014; 371(2):130-139 doi: 10.1056/NEJMoa1314768

14. Oldhoff JM. Anti-IL-5 recombinant humanized monoclonal antibody (Mepolizumab) for the treatment of atopic dermatitis. Allergy 2005; 60(5):693–696 doi: 10.1111/j.1398-9995.2005.00791.x

15. Braissant O, Foufelle F, Scotto G, et al. Differential expression of peroxisome proliferator-activated receptor (PPARs): tissue distribution of PPAR-alpha, -beta and –gamma in the adult rat. Endocrinology 1996; 137(1):354-366 doi: 10.1210/endo.137.1.8536636

16. Palmer CN, Hsu MH, Griffin KJ, et al. Peroxisome proliferator-activated receptor alpha expression in human liver. Mol Pharmacol 1998; 53(1):14-22 doi: 10.1124/mol.53.1.14

17. Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and live X receptor-alpha in human: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 1997; 46(8):1319-1327 doi: 10.2337/diabetes.46.8.1319

18. Escher P, Braissant O, Basu-Modak S, et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001; 142(10):4195-4202 doi: 10.1210/en.142.10.4195

19. Michalic L, Desvergbe B, Basa-Modak S, et al. Nuclear hormone receptor and mouse skin homeostasis: implication of PPAR beta. Hormone Res 2000; 54(5-6):263-26 doi: 10.1159/000053269

20. Rivier M, Safonova I, Lebrun P, et al. Differential expression of peroxisome proliferator-activated receptor subtypes during the differentiation of human keratinocytes, J. Invest. Dermatol. 1998; 111(6):1116–1121 doi: 10.1046/j.1523-1747.1998.00439.x

21. Yang LP, Keating GM. Fenofibric acid: in combination therapy in the treatment of mixed dyslipidemia". Am J Cardiovasc Drugs 2009; 9(6):401–409 doi: 10.2165/11203920-000000000-00000

22. Steiner G. How can we improve the management of vascular risk in type 2 diabetes: insights from FIELD. Cardiovasc Drugs Ther 2009; 23(5):403–8 doi: 10.1007/s10557-009-6190-7

23. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53:409-435

24. Miyata KS, McCaw SE, Marcus SL, et al. The peroxisome proliferator-activated receptor interact with the retinoid X receptor. Gene 1994; 148(2):327-330 doi: 10.1016/0378-1119(94)90707-2

25. Krey G, Keller H, Mahfoudi A, et al. Xenopus peroxisome proliferator-activated receptors: genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acid. J Steroid Biochem Mol Biol 1993; 47(1):65-73 doi: 10.1016/0960-0760(93)90058-5

26. IJpenberg AI, Jeannin E, Wahli W, et al. Polarity and specific sequence requirement of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem 1997; 272(32):20108-20117 doi: 10.1074/jbc.272.32.20108

27. Ricote M, Glass CK. PPARs and molecular mechanism of transcription. Biochim Biophys Acta 2007; 1771(8):926-936 doi: 10.1016/j.bbalip.2007.02.013

28. Ahmed AU. An overview of inflammation: mechanism and consequences. Front Biol 2011; 6(4):274-281 doi: 10.1007/s11515-011-1123-9

29. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4):783-781 doi: 10.1016/j.cell.2006.02.015

30. Hou X, Pei F. Estradiol inhibits cytokine-induced expression of VCAM-1 and ICAM-1 in cultured human endothelial cells via AMPK/PPAR activation. Cell Biochem Biophys 2015; 72(3):709-717 doi: 10.1007/s12013-015-0522-y

31. Hammond ME, Lapointe GR, Feucht PH. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J Immunol 1995; 155 (3):1428-1433

32. Devchand PR, Keller H, Peters JM, et al. The PPAR-leukotriene B4 pathway to inflammation control, Nature 1996; 384:39–43 doi: 10.1038/384039a0

33. Jiang C, Ting AT, Sees B. PPAR- agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391:83-86 doi: 10.1038/34184

34. Staels B, Koenig W, Habib A, R. et al. Activation of human aortic smooth-muscle cells is inhibited by PPAR alpha but not by PPAR gamma activators, Nature 1998; 393:790–793 doi: 10.1038/31701

35. Marx N, Sukhova GK, Collins T, et al. PPAR alpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells, Circulation 1999; 99(24):3125–3131

36. Welch JS, Ricote M, Akiyama TE, et al. PPARγ and PPAR negatively regulate specific subsets of lipopolysaccharide and IFNγ target genes in macrophages, Proc Natl Acad Sci USA 2003; 100(11):6712–6717 doi: 10.1073/pnas.1031789100

37. Ding G, Cheng L, Qin Q, et al. PPAR delta modulates lipopolysaccharide-induced TNFalpha inflammation signaling in cultured cardiomyocytes, J Mol Cell Cardiol 2006; 40(6):821–828 doi: 10.1016/j.yjmcc.2006.03.422

38. Natarajan C, Bright JJ. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes and Immunity 2002; 3(2):59–70 doi: 10.1038/sj/gene/6363832

39. Gervois P, Mansouri RM. PPARα as a therapeutic target in inflammation-associated diseases. Expert Opin Ther Targets 2012; 16(11):1113-1125 doi: 10.1517/14728222.2012.715633

40. Kuribayashi S, Xu X, Ishii S, et al. A novel thiazolidinediones MCC-555 down-regulates tumor necrosis factor--induced expression of vascular adhesion molecule-a in vascular endothelial cells. Atherosclerosis 2005; 182(1):71-77 doi: 10.1016/j.atherosclerosis.2005.01.043

41. Tyrone E, James PG, Zineh WI. Modulatory effect of fenofibrate on endothelia production of neutrophil chemokines IL-8 and ENA-78. Cardiovasc Drugs Ther 2012; 26(2):95-99 doi: 10.1007/s10557-011-6368-7

42. Kostadinova R, Wahli W, Michalik L. PPARs in diseases: Control mechanisms of inflammation. Curr Med Chem 2005; 12(25):2995-3009 doi: 10.2174/092986705774462905

43. Delerive P, De Bosscher K, Besnard S, et al. Peroxisome proliferator-activated receptor  negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem. 1999; 274(45):32048–32054 doi: 10.1074/jbc.274.45.32048

44. Delerive P, Gervois P, Fruchart C, et al. Induction of IkappaB alpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor alpha activators, J. Biol. Chem. 2000; 275(47):36703–36707 doi: 10.1074/jbc.M004045200

45. Desreumaux P, Dubuquoy L, Nutten S, et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator–activated aeceptor g (PPAR ) heterodimer: A basis for new therapeutic strategies. J Exp Med 2001; 193(7):827–838 doi: 10.1084/jem.193.7.827

46. Kim JS, Lee YH, Chang YU, et al. PPAR regulates inflammatory reaction by inhibiting the MAPK/NF-B pathway in C2C12 skeletal muscle cells. J Physiol Biochem 2017; 73(1):49-57 doi: 10.1007/s13105-016-0523-3

47. Shi L, Lin Q, Li X, et al. Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK-NF-B/AP-1/STAT-1 inactivation and PPAR- activation. Mol Nutr Food Res 2017; 61(9):1601013 doi: 10.1002/mnfr.201601013

48. Kamei Y, Xu L, Heinzel T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptor. Cell 1996; 85(3):403-414 doi: 10.1016/S0092-8674(00)81118-6

49. Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor -dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 2000; 20(13):4699-4707 doi: 10.1128/MCB.20.13.4699-4707.2000

50. Lee CH, Chawla A. Urbiztondo N, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARScience 2003; 302(5644):453-457 doi: 10.1126/science.1087344

51. Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-. Nature 2005; 437:759-763 doi: 10.1038/nature03988

52. Sertznig P, Reichrath J. Peroxisome proliferator-activated receptors (PPARs) in dermatology. Dermato-Endocrinol 2011; 3(3):130-135 doi: 10.4161/derm.15025

53. Imokawa G, Abe A, Jin K et al. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 1991; 96(4):526-526 doi: 10.1111/1523-1747.ep12470233

54. Osawa R, Konno S, Akiyama M, et al. Japanese-specific filaggrin gene mutations in Japanese patients suffering from atopic eczema and asthma. J Invest Dermatol 2010; 130(12):2834-2836 doi: 10.1038/jid.2010.218

55. Glatzer F, Gschwandtner M, Ehling S, et al. Histamine induces proliferation in keratinocytes from patients with atopic dermatitis through the histamine 4 receptor. J Allergy Clin Immunol 2013; 132(6):1358-1367 doi: 10.1016/j.jaci.2013.06.023

56. Mantel A, Carpenter-Mendini AB, Buskirk AB, et al. Aldo-Keto reductase 1C3 is expressed in dfferentiated human epidermis, affects keratinocyte differentiation, and is upregulated in atopic dermatitis, J Invest Dermatol 2012; 132(4):1103-1110 doi: 10.1038/jid.2011.412

57. Man MQ, Barish GD, Schmuth M, et al. Deficiency of PPAR in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation. J Invest Dermatol 2008; 128(2):370-377 doi: 10.1038/sj.jid.5701026

58. Hanley K, Jiang Y, He SS, et al. Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor PPAR. J Invest Dermatol 1998; 110(4):368-375 doi: 10.1046/j.1523-1747.1998.00139.x

59. Kim B, Kim JE, Kim HS. Caffeic acid induces keratinocyte differentiation by activation of PPAR-J Pharm Pharmacol 2014; 66(1):84-92 doi: 10.1111/jphp.12159

60. Kim DJ, Bility MT, Billin AN, et al. PPAR selectively induces differentiation and inhibits cell proliferation. Cell Death Differ 2006; 13(1):53-60 doi: 10.1038/sj.cdd.4401713

61. Schmuth M, Haqq CM, Cairns WJ, et al. Peroxisome proliferator-activated receptor (PPAR)- stimulates differentiation and lipid accumulation in keratinocytes. J Invest Dermatol 2004; 122(4):971-983 doi: 10.1111/j.0022-202X.2004.22412.x

62. Man MQ, Choi EH, Schmuth M, et al. Basis for improved permeability barrier homeostasis induced by PPAR and LXR activators: Liposensors stimulate lipid synthesis, lamellar body secretion, and post-secretory lipid processing. J Invest Dermatol 2006; 126(2):386-392 doi: 10.1038/sj.jid.5700046

63. Wallmeyera L, Lehnena D, Eger N, et al. Stimulation of PPAR normalizes the skin lipid ratio and improves the skin barrier of normal and filaggrin deficient reconstructed skin. J Dermatol Sci 2015; 80(2):102-110 doi: 10.1016/j.jdermsci.2015.09.012

64. Chon SH, Tannahill R, Yao X, et al. Keratinocyte differentiation and upregulation of ceramide synthesis induced by an oat lipid extract via the activation of PPAR pathways. Exp Dermatol 2015; 24(4):290-295 doi: 10.1111/exd.12658

65. Carmi-Levy I, Homey B, Soumelis V. A modular view of cytokine networks in atopic dermatitis. Clinic Rev Allerg Immunol 2011; 41(3):245-253 doi: 10.1007/s12016-010-8239-6

66. Yan Y, Furumura M, Numata S, et al. Various peroxisome proliferator-activated receptor (PPAR)- agonists differently induce differentiation of cultured human keratinocytes. Exp Dermatol 2015; 24(1):62-65 doi: 10.1111/exd.12571

67. Qiang MM, Fowler AJ, Schmuth M, et al. Peroxisome-proliferator-activated receptor (PPAR)- activation stimulates keratinocyte differentiation. J Invest Dermatol 2004; 123(2):305-312 doi: 10.1111/j.0022-202X.2004.23235.x

68. Sayama K, Komatsuzawa H, Yamasaki K, et al. New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of b-defensins, LL37, and TLR2. Eur J Immunol 2005; 35(6):1886–1895 doi: 10.1002/eji.200526088

69. Lua X, Liua T, Chena K, et al. Isorhamnetin: A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed Pharmacother 2018; 103:800-811 doi: 10.1016/j.biopha.2018.04.016

70. Caroline M, Marco S, Vincent E, et al. 17,18-Epoxyeicosatetraenoic acid targets PPAR [gamma] and p38 mitogen-activated protein kinase to mediate its anti-inflammatory effects in the lung: Role of soluble epoxide hydrolase. Am J Respir Cell Mol Biol 2010; 43(5):564-575 doi: 10.1165/rcmb.2009-0155OC

71. Dai X, Sayama K, Tohyama M et al. PPAR mediates innate immunity by regulating the 1, 25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes. J Dermatol Sci 2010; 60(3):179-186 doi: 10.1016/j.jdermsci.2010.09.008

72. Wang TT, Nestel FP, Bourdeau V, et al. 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004; 173(5):2909-2912 doi: 10.4049/jimmunol.173.5.2909

73. Weber G, Heilborn JD, Jimenez CIC, et al. Vitamin D induces the antimicrobial protein hCAP18 in human skun. J Invest Dermatol 2005; 124(5):1080-1082 doi: 10.1111/j.0022-202X.2005.23687.x

74. Schauder J, Dorschner RA, Coda AB. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 2007; 117(3):803-811 doi: 10.1172/JCI30142

75. Angelova-Fischer I, Fernandez IM, Donnadieu MH, et al. Injury to the stratum corneum induces in vivo expression of human thymic stromal lymphopoietin in the epidermis. J Invest Dermatol 2010; 130(10):2505-2507 doi: 10.1038/jid.2010.143

76. Vu AT, Baba T, Chen X. et al. Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway. J Allergy Clin Immunol 2010; 126(5):985-993 doi: 10.1016/j.jaci.2010.09.002

77. Miyata M, Hatsushika K, Ando T, et al. Mast cell regulation of epithelial TSLP expression plays an important role in the development of allergic rhinitis. Eur J Immunol 2008; 38(6):1487-1492 doi: 10.1002/eji.200737809

78. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP Nat Immunol 2002; 3(7):673-680 doi: 10.1038/ni805

79. Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001; 15(6):985-995 doi: 10.1016/S1074-7613(01)00243-6

80. Ikeda K, Nakajima H, Suzuki K, et al. Mast cells produce interleukin-25 upon FcRI-mediated activation. Blood 2003; 101(9):3594-3596 doi: 10.1182/blood- 2002-09-2817

81. Havid M, Vestergaard C, Kemp K, et al. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction. J Invest Dermatol 2011; 131(1):150-157 doi: 10.1038/jid.2010.277;

82. Wang YH, Angkasekwinai P, Lu N, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007; 204(8):1837-1847 doi: 10.1084/jem.20070406

83. Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid cells. Trends in Immunol 2012; 33(8):389-396 doi: 10.1016/j.it.2012.04.005

84. Allakhverdi Z, Smith DE, C0meau MR, et al. The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol 2007; 179(4):2051-2054 doi: 10.4049/jimmunol.179.4.2051

85. Novak N, Kruse S, Kraft S, et al. Dichotomic nature of atopic dermatitis reflected by combined analysis of monocyte immunophenotyping and single nucleotide polymorphisms of the interleukin-4/ interleukin-13 receptor gene: The dichotomy of extrinsic and intrinsic atopic dermatitis. J Invest Dermatol 2002; 119(4):870-875 doi: 10.1046/j.1523-1747.2002.00191.x

86. Hamid Q, Boguniewicz M, Leung DYM. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 1994; 94(2):870-876 doi: 10.1172/JCI117408

87. Jeong CW, Ahn KS, Rho NK, et al. Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy 2003; 33(12):1717-1724 doi: 10.1111/j.1365-2222.2003.01827.x

88. Kato A, Fujii E, Watanabe T, et al. Distribution of IL-31 and its receptor expressing cells in skin of atopic dermatitis. J Dermatol Sci 2014; 74(3):229-235 doi: 10.1016/j.jdermsci.2014.02.009

89. Raap U, Wichmann K, Bruder M, et al. Correlation of IL-31 serum levels with severity of atopic dermatitis. J Allergy Clin Immunol 2008; 122(2):421-422 doi: 10.1016/j.jaci.2008.05.047

90. Cheung PFY, Wong1 CK, Ho AWY, et al. Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Intl Immunol 2010; 22(6):453-467 doi: 10.1093/intimm/dxq027

91. Sonkoly E, Muller A, Lauerma A, et al. IL-31: A new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 2006; 117(2):411-417 doi: 10.1016/j.jaci.2005.10.033

92. Takaoka A, Arai I, Sugimoto M, et al. Involvement of IL-31 on scratching behavior in NC/Nga mice with atopic-like dermatitis. Exp Dermatol 2006; 15(3):161-167 doi: 10.1111/j.1600-0625.2006.00405.x

93. Grimstad O, Sawanobori Y, Vestergaard C, et al. Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol 2009; 18(1):35-43 doi: 10.1111/j.1600-0625.2008.00766.x

94. Costanzo A, Chimenti MS, Botti E, et al. IL-21 in the pathogenesis and treatment of skin diseases. J Dermatol Sci 2010; 60(2):61-66 doi:10.1016/j.jdermsci.2010.08.016

95. Grewe M, Walther S, Gyufko K, et al. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J Invest Dermatol 1995; 105(3):407-410 doi: 10.1111/1523-1747.ep12321078

96. Grewe M, Bruijnzeel-Koomen CA, Schopf E, et al. A role for Th 1 and Th 2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today 1998; 19(8):359-361

97. Malajian D, Guttman-Yassky E. New pathogenic and therapeutic paradigms in atopic dermatitis. Cytokine 2015; 73(2):311-318 doi: 10.1016/j.cyto.2014.11.023

98. Sugimoto T, Ishikawa Y, Yoshimoto T, et al. Iterleukin 18 acts on memory T helper cells type 1 to induce airway inflammation and hyperresponsiveness in a maive host mouse. J Exp Med 2004; 199(4):535-545 doi: 10.1084/jem.20031368

99. Homey B, Steinhoff M, Ruzicka T, et al. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 2006; 118(1):178-189 doi: 10.1016/j.jaci.2006.03.047

100. Konishi H, Tsutsumi H, Murakami T, et al. IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free condition. Proc Natl Acad Sci USA 2002; 99(17):11340-11345 doi: 10.1073/pnas.152337799

101. Novak N, Kruse S, Poteck J et al. Single nucleotide polymorphisms of the IL-18 gene are associated with atopic eczema. J Allergy Clin Immunol 2005; 115(4):828-833 doi:10.1016/j.jaci.200

102. Higa S, Kotani M, Matsumoto M, et al. Administration of anti-interleukin 18 antibody fails to inhibit development of dermatitis in atopic dermatitis-model mice NC/Nga. Br J Dermatol 2003; 149(1):39-45 doi: 10.1046/j.1365-2133.2003.05406.x

103. Jin H, Oyoshi MK, Le Y, et al. IL-12R is essential for epicutaneous sensitization and allergic skin inflammation in human and mice. J Clin Invest 2009; 119(1):47-60 doi: 10.1172/JCI32310

104. Mizutani H, Mineoka RT, Nakamura N, et al. Serum IL-21 levels are elevated in atopic dermatitis patients with acute skin lesions. Allergol Intl 2017; 66(3):440-444 doi: 10.1016/j.alit.2016.10.010

105. Thepen T, Langeveld-Wildschut EG, Bihari IC, et al. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: An immunocytochemical study. J Allergy Clin Immunol 1996; 97(3):828-837

106. Koga C, Kabashima K, Shiraishi N, et al. Possible pathogenic role of Th17 Cells for atopic dermatitis. J Invest Dermatol 2008; 128(11):2625-2630 doi:10.1038/jid.2008.111

107. Maa L, Xueb HB, Guanc XH, et al. Possible role of Th17 cells and IL-17 in the pathogenesis of atopic dermatitis in northern China. J Dermatol Sci 2012; 68(1):66-67 doi:10.1016/j.jdermsci.2010.08.016

108. MilovanovicM, Drozdenko D, Weise C, et al. Interleukin-17A promotes IgE production in human B cells. J Invest Dermatol 2010; 130(11):2621-2628 doi: 10.1038/jid.2010.175

109. Duhen T, Geiger R, Jarrossay D, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 2009; 10(8):857-863 doi: 10.1038/ni.1767

110. Fujita H, Nograles KE, Kikuchi T, et al. Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc Natl Acad Sci USA 2009; 106(51):21795-21800 doi: 10.1073/pnas.0911472106

111. Trifari S, Kaplan CD, Tran EH, et al. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat Immunol 2009; 10(8):864-871 doi: 10.1038/ni.1770

112. Boniface K, Bernard FX, Garcia M, et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 2005; 174(6):3695-3702 doi: 10.4049/jimmunol.174.6.3695

113. Nograles KE, Zaba LC, Shemer A, et al. IL-22–producing ‘‘T22’’ T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17–producing TH17 T cells. J Allergy Clin Immunol 2009; 123(6):1244-1252 doi: 10.1016/j.jaci.2009.03.041

114. Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARg agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulation IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. Eur J Pharmacol 2013; 701(1-3):131-143 doi: 10.1016/j.ejphar.2012.11.033

115. Jung Y, Kim JC, Park NJ, et al. Eupatilin, an activator of PPARa, inhibits the development of oxazolone-induced atopic dermatitis symptoms in Balb/c mice. Biochemi Biophys Res Comm 2018; 496(2):508-514 doi: 10.1016/j.bbrc.2018.01.098

116. Hatano Y, Man MQ, MD, Uchida Y, et al. Murine atopic dermatitis responds to peroxisome proliferator-activated receptors  and  (but not ) and liver X receptor activators. J Allergy Clin Immunol 2010; 125(1):160-169 doi: 10.1016/j.jaci.2009.06.049

117. Aioi A, Tonogaito H, Suto H, et al. Impairment of skin barrier function in NC/Nga Tnd mice as a possible model for atopic dermatitis. Br J Dermatol 2001; 144(1):12-18 doi: 10.1046/j.1365-2133.2001.03946.x

118. Matsuda H, Watanabe N, Geba GP, et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Intl Immunol 1997; 9(3):461-466 doi: 10.1093/intimm/9.3.461

119. Nishino R, Fukuyama T, Watanabe Y, et al. Significant upregulation of cytokine secretion fromT helper type 9 and 17 cells in a NC/Nga mouse model of ambient chemical exposure-induced respiratory allergy. J Pharmacol Toxicol Methods 2016; 80:35-42 doi: 10.1016/j.vascn.2016.04.009

120. Iwasaki T, Tanaka A, Matsuda H. Atopic NC/Nga mice as a model for allergic asthma: Cytokine profiles and eosinophil productivity of bone marrow. J Vet Med Sci 2001; 63(4):471-474 doi: 10.1292/jvms.63.471

121. Chiba T, Takeuchi S, Esaki H, et al Topical application of PPAR (but not  or ) suppesses atopic dermatitis in NC/Nga mice. Allergy 2012; 67(7):936-942 doi: 10.1111/j.1398-9995.2012.02844.x

122. Karuppagounder V, Somasundaram A, Thandavarayan RA, et al. Tannic acid modulates NFB signaling pathway and skin inflammation in NC/Nga mice through PPARc expression. Cytokine 2015; 76(2):206-213 doi: 10.1016/j.cyto.2015.05.016




DOI: https://doi.org/10.24294/ti.v4.i2.1063

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Akihiro Aioi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.