References
Ahmed, S., Alshater, M. M., Ammari, A. El, & Hammami, H. (2022). Artificial intelligence and machine learning in finance: A bibliometric review. Research in International Business and Finance, 61. https://doi.org/10.1016/j.ribaf.2022.101646
Ariza-Garzon, M. J., Arroyo, J., Caparrini, A., & Segovia-Vargas, M. J. (2020). Explainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending. IEEE Access, 8, 64873–64890. https://doi.org/10.1109/ACCESS.2020.2984412.
Ariza-Garzón, M. J., Camacho-Miñano, M. D. M., Segovia-Vargas, M. J., & Arroyo, J. (2021). Risk-return modelling in the p2p lending market: Trends, gaps, recommendations and future directions. Electronic Commerce Research and Applications, 49. https://doi.org/10.1016/j.elerap.2021.101079.
Assous, H. F. (2022). Prediction of Banks Efficiency Using Feature Selection Method: Comparison between Selected Machine Learning Models. Complexity, 2022. https://doi.org/10.1155/2022/3374489
Babaei, G. & Bamdad, S. (2023). Application of credit-scoring methods in a decision support system of investment for peer-to-peer lending. International Transactions in Operational Research, 30(5), pp. 2359–2373. https://doi.org/10.1111/itor.13064.
Bastos, J. A. (2022). Predicting Credit Scores with Boosted Decision Trees. Forecasting, 4(4), 925–935. https://doi.org/10.3390/forecast4040050.
Bastos, J. A. & Matos, S. M. (2022). Explainable models of credit losses. European Journal of Operational Research, 301(1), pp. 386–394. https://doi.org/10.1016/j.ejor.2021.11.009.
Bellotti, A., Brigo, D., Gambetti, P. & Vrins, F. (2021). Forecasting recovery rates on non-performing loans with machine learning. International Journal of Forecasting, 37(1), 428–444. https://doi.org/10.1016/j.ijforecast.2020.06.009.
Bhattacharya, A., Biswas, S. K. & Mandal, A. (2023). Credit risk evaluation: a comprehensive study. Multimedia Tools and Applications, 82(12), 18217–18267. https://doi.org/10.1007/s11042-022-13952-3.
Bitetto, A., Cerchiello, P., & Mertzanis, C. (2023). Measuring financial soundness around the world: A machine learning approach. International Review of Financial Analysis, 85. https://doi.org/10.1016/j.irfa.2022.102451.
Boguslauskas, V., Mileris, R., & Adlyte, R. (2011). New internal rating approach for credit risk assessment. Technological and Economic Development of Economy, 17(2), 369–381. https://doi.org/10.3846/20294913.2011.583721.
Çallı, B. A., & Coşkun, E. (2021). A Longitudinal Systematic Review of Credit Risk Assessment and Credit Default Predictors. SAGE Open, 11(4). https://doi.org/10.1177/21582440211061333.
Chang, Y. C., Chang, K. H. and Wu, G. J. (2018). Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions. Applied Soft Computing Journal, 73, 914–920. https://doi.org/10.1016/j.asoc.2018.09.029.
Chen, N., Ribeiro, B. & Chen, A. (2016). Financial credit risk assessment: a recent review. Artificial Intelligence Review, 45(1), 1–23. https://doi.org/10.1007/s10462-015-9434-x.
Chen, S., Härdle, W. K. & Moro, R. A. (2011). Modeling default risk with support vector machines. Quantitative Finance, 11(1), 135–154. https://doi.org/10.1080/14697680903410015.
Ciampi, F., Cillo, V., & Fiano, F. (2020). Combining Kohonen maps and prior payment behavior for small enterprise default prediction. Small Business Economics, 54(4), 1007–1039. https://doi.org/10.1007/s11187-018-0117-2.
Corazza, M., De March, D., & di Tollo, G. (2021). Design of adaptive Elman networks for credit risk assessment. Quantitative Finance, 21(2), 323–340. https://doi.org/10.1080/14697688.2020.1778175.
de Castro Vieira, J. R., Barboza, F., Sobreiro, V. A., & Kimura, H. (2019). Machine learning models for credit analysis improvements: Predicting low-income families’ default. Applied Soft Computing Journal, 83. https://doi.org/10.1016/j.asoc.2019.105640.
Djeundje, V. B., & Crook, J. (2022). Sensitivity of stress testing metrics to estimation risk, account behaviour and volatility for credit defaults. Journal of the Operational Research Society, 74(7), 1763–1774. https://doi.org/10.1080/01605682.2022.2115413.
Feki, A., Ishak, A. Ben, & Feki, S. (2012). Feature selection using Bayesian and multiclass Support Vector Machines approaches: Application to bank risk prediction. Expert Systems with Applications, 39(3), 3087–3099. https://doi.org/10.1016/j.eswa.2011.08.172.
Feldman, D. & Gross, S. (2005). Mortgage default: Classification trees analysis. Journal of Real Estate Finance and Economics, 30(4), 369–396. https://doi.org/10.1007/s11146-005-7013-7.
Fitzpatrick, T., & Mues, C. (2021). How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments. European Journal of Operational Research, 294(2), 711–722. https://doi.org/10.1016/j.ejor.2021.01.047.
Florez-Lopez, R. & Ramon-Jeronimo, J. M. (2015). Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal. Expert Systems with Applications, 42(13), 5737–5753. https://doi.org/10.1016/j.eswa.2015.02.042.
Giudici, P., Centurelli, M. & Turchetta, S. (2024). Artificial Intelligence risk measurement. Expert Systems with Applications, 235(August 2023), 121220. https://doi.org/10.1016/j.eswa.2023.121220.
Guo, Y. (2020). Credit risk assessment of P2P lending platform towards big data based on BP neural network. Journal of Visual Communication and Image Representation, 71, 102730. https://doi.org/10.1016/j.jvcir.2019.102730.
Guo, Y., Jiang, S., Qiao, H., Chen, F., & Li, Y. (2021). A new integrated similarity measure for enhancing instance-based credit assessment in P2P lending. Expert Systems with Applications, 175, 114798. https://doi.org/10.1016/j.eswa.2021.114798.
Guo, Y., Jiang, S., Zhou, W., Luo, C. & Xiong H. (2021). A predictive indicator using lender composition for loan evaluation in P2P lending. Financial Innovation, 7(1), 1–24. https://doi.org/10.1186/s40854-021-00261-1.
Härdle, W., Lee, Y. J., Schäfer, D., & Yeh, Y. R. (2009). Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies. Journal of Forecasting, 28(6), 512–534. https://doi.org/10.1002/for.1109.
Hughes, J. P., Jagtiani, J., & Moon, C. G. (2022). Consumer lending efficiency: commercial banks versus a fintech lender. Financial Innovation, 8(1), 1–39. https://doi.org/10.1186/s40854-021-00326-1.
Jiang, C., Xiong, W., Xu, Q., & Liu, Y. (2021). Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty. Finance Research Letters, 38, 101487. https://doi.org/10.1016/j.frl.2020.101487.
Jiang, J., Meng, X., Liu, Y., & Wang, H. (2022). An Enhanced TSA-MLP Model for Identifying Credit Default Problems. SAGE Open, 12(2). https://doi.org/10.1177/21582440221094586.
Kaposty, F., Kriebel, J., & Löderbusch, M. (2020). Predicting loss given default in leasing: A closer look at models and variable selection. International Journal of Forecasting, 36(2), 248–266. https://doi.org/10.1016/j.ijforecast.2019.05.009.
Kellner, R., Nagl, M., & Rösch, D. (2022). Opening the black box – Quantile neural networks for loss given default prediction. Journal of Banking and Finance, 134, 106334. https://doi.org/10.1016/j.jbankfin.2021.106334.
Khemakhem, S., & Boujelbene, Y. (2018). Predicting credit risk on the basis of financial and non-financial variables and data mining. Review of Accounting and Finance, 17(3), 316–340. https://doi.org/10.1108/RAF-07-2017-0143.
Kim, H. S., & Sohn, S. Y. (2010). Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, 201(3), 838–846. https://doi.org/10.1016/j.ejor.2009.03.036.
Kočenda, E., & Iwasaki, I. (2022). Bank survival around the world: A meta-analytic review. Journal of Economic Surveys, 36(1), 108–156. https://doi.org/10.1111/joes.12451.
Kolte, A., Roy, J. K., & Vasa, L. (2023). The impact of unpredictable resource prices and equity volatility in advanced and emerging economies: An econometric and machine learning approach. Resources Policy, 80. https://doi.org/10.1016/j.resourpol.2022.103216.
Korangi, K., Mues, C., & Bravo, C. (2023). A transformer-based model for default prediction in mid-cap corporate markets. European Journal of Operational Research, 308(1), 306–320. https://doi.org/10.1016/j.ejor.2022.10.032.
Kou, G., Peng, Y., & Lu, C. (2014). MCDM approach to evaluating bank loan default models. Technological and Economic Development of Economy, 20(2), 292–311. https://doi.org/10.3846/20294913.2014.913275.
Kristóf, T., & Virág, M. (2022). EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks. Research in International Business and Finance, 61. https://doi.org/10.1016/j.ribaf.2022.101644
Kruppa, J., Schwarz, A., Arminger, G. & Ziegler, A. (2013). Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications, 40(13), 5125–5131. https://doi.org/10.1016/j.eswa.2013.03.019.
Li, B. (2022). Online Loan Default Prediction Model Based on Deep Learning Neural Network. Computational Intelligence and Neuroscience, 2022, 1–9. https://doi.org/10.1155/2023/9808494.
Li, G., Wang, X., Bi, D., & Hou, J. (2022). Risk Measurement of the Financial Credit Industry Driven by Data: Based on DAE-LSTM Deep Learning Algorithm. Journal of Global Information Management, 30(11). https://doi.org/10.4018/JGIM.308806.
Li, S. T., Shiue, W., & Huang, M. H. (2006). The evaluation of consumer loans using support vector machines. Expert Systems with Applications, 30(4), 772–782. https://doi.org/10.1016/j.eswa.2005.07.041.
Li, W., Ding, S., Chen, Y. & Yang, S (2018). Heterogeneous ensemble for default prediction of peer-to-peer lending in China. IEEE Access, 6, 54396–54406. https://doi.org/10.1109/ACCESS.2018.2810864.
Li, Z., Jiang, Z. & Pan, X. (2022). Default Risk Prediction of Enterprises Based on Convolutional Neural Network in the Age of Big Data: Analysis from the Viewpoint of Different Balance Ratios. Complexity, 2022. https://doi.org/10.1155/2022/5139562.
Lin, C., Qiao, N., Zhang, W., Li, Y. & Ma, S. (2022). Default risk prediction and feature extraction using a penalized deep neural network. Statistics and Computing, 32(5), 1–17. https://doi.org/10.1007/s11222-022-10140-z.
Lin, S. L. (2009). A new two-stage hybrid approach of credit risk in banking industry. Expert Systems with Applications, 36(4), 8333–8341. https://doi.org/10.1016/j.eswa.2008.10.015.
Liu, C., Ming, Y., Xiao, Y., Zheng, W. & Hsu C-H. (2021). Finding the next interesting loan for investors on a peer-to-peer lending platform. IEEE Access, 9, 111293–111304. https://doi.org/10.1109/ACCESS.2021.3103510.
Liu, Z., Zhang, Z., Yang, H., Wang, G. & Xu Z. (2023). An innovative model fusion algorithm to improve the recall rate of peer-to-peer lending default customers. Intelligent Systems with Applications, 20(March), 200272. https://doi.org/10.1016/j.iswa.2023.200272.
Lyócsa, Š., Vašaničová, P., Misheva, B. H. & Vateha, M. D. (2022). Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets. Financial Innovation, 8, (32), 1-21. https://doi.org/10.1186/s40854-022-00338-5.
Ma, Z., Hou, W., & Zhang, D. (2021). A credit risk assessment model of borrowers in P2P lending based on BP neural network. PLoS ONE, 16(8 August), 1–21. https://doi.org/10.1371/journal.pone.0255216.
Munkhdalai, L., Munkhdalai, T., Namsrai, O. E., Lee, J. Y., & Ryu, K. H. (2019). An empirical comparison of machine-learning methods on bank client credit assessments. Sustainability (Switzerland), 11(3), 1–23. https://doi.org/10.3390/su11030699.
Nazareth, N., & Ramana Reddy, Y. V. (2023). Financial applications of machine learning: A literature review. Expert Systems with Applications, 219(January), 119640. https://doi.org/10.1016/j.eswa.2023.119640.
Ribeiro, B., Silva, C., Chen, N., Vieira, A., & Carvalho Das Neves, J. (2012). Enhanced default risk models with SVM+. Expert Systems with Applications, 39(11), 10140–10152. https://doi.org/10.1016/j.eswa.2012.02.142.
Ribeiro-Navarrete, S., Piñeiro-Chousa, J., López-Cabarcos, M. Á., & Palacios-Marqués, D. (2022). Crowdlending: mapping the core literature and research frontiers. Review of Managerial Science, 16(8), 2381–2411. https://doi.org/10.1007/s11846-021-00491-8.
Robisco, A. A. & Martínez, J. M. C. (2022). Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction. Financial Innovation, 8(70), 1-35. https://doi.org/10.1186/s40854-022-00366-1.
Shi, S., Tse, R., Luo, W., D’Addona, S. & Pau, G. (2022). Machine learning-driven credit risk: a systemic review. Neural Computing and Applications, 34(17), 14327–14339. https://doi.org/10.1007/s00521-022-07472-2.
Sigrist, F., & Leuenberger, N. (2023). Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities. European Journal of Operational Research, 305(3), 1390–1406. https://doi.org/10.1016/j.ejor.2022.06.035.
Song, Y., Wang, Y., Ye, X., Zaretzki, R., & Liu, C. (2023). Loan default prediction using a credit rating-specific and multi-objective ensemble learning scheme. Information Sciences, 629, 599–617. https://doi.org/10.1016/j.ins.2023.02.014.
Sousa, M. R., Gama, J., & Brandão, E. (2016). A new dynamic modeling framework for credit risk assessment. Expert Systems with Applications, 45, 341–351. https://doi.org/10.1016/j.eswa.2015.09.055.
Sun, W., Zhang, X., Li, M., & Wang, Y. (2023). Interpretable high-stakes decision support system for credit default forecasting. Technological Forecasting and Social Change, 196, 122825. https://doi.org/10.1016/j.techfore.2023.122825.
Twala, B. (2010). Multiple classifier application to credit risk assessment. Expert Systems with Applications, 37(4), pp. 3326–3336. https://doi.org/10.1016/j.eswa.2009.10.018.
Valluri, C., Raju, S., & Patil, V. H. (2022). Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques. Journal of Marketing Analytics, 10(3), 279–296. https://doi.org/10.1057/s41270-021-00135-6.
Wang, C., Zhang, Y., Zhang, W., & Gong, X. (2021). Textual sentiment of comments and collapse of P2P platforms: Evidence from China’s P2P market. Research in International Business and Finance, 58(December 2019), 101448. https://doi.org/10.1016/j.ribaf.2021.101448.
Woo, H., & Sohn, S. Y. (2022). A credit scoring model based on the Myers–Briggs type indicator in online peer-to-peer lending. Financial Innovation, 8(1). https://doi.org/10.1186/s40854-022-00347-4.
Xia, Y., Zhao, J., He, L., Li, Y., & Yang, X. (2021). Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach. International Journal of Forecasting, 37(4), 1590–1613. https://doi.org/10.1016/j.ijforecast.2021.03.002.
Yang, F., Qiao, Y., Qi, Y., Bo J. & Wang X. (2022). BACS: blockchain and AutoML-based technology for efficient credit scoring classification. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04531-8
Yang, M., Lim, M. K., Qu, Y., Li, X., & Ni, D. (2023). Deep neural networks with L1 and L2 regularization for high dimensional corporate credit risk prediction. Expert Systems with Applications, 213(December 2021). https://doi.org/10.1016/j.eswa.2022.118873
Yıldırım, M., Okay, F. Y., & Özdemir, S. (2021). Big data analytics for default prediction using graph theory. Expert Systems with Applications, 176. https://doi.org/10.1016/j.eswa.2021.114840
Zhang, L., Yu, Q., Zhang Y. & Zhou, C. (2023). Adaptive Feature Cross-Compression for Credit Default Prediction. IEEE Access, 11(September), 94322–94334. https://doi.org/10.1109/ACCESS.2023.3309834.
Zhang, X. & Yu, L. (2024). Consumer credit risk assessment: A review from the state-of-the-art classification algorithms, data traits, and learning methods. Expert Systems with Applications, 237, 121484. https://doi.org/10.1016/j.eswa.2023.121484.
Zhu, X., Chu, Q., Song, X., Hu, P. & Peng, L. (2023). Explainable prediction of loan default based on machine learning models. Data Science and Management, 6(3), 123–133. https://doi.org/10.1016/j.dsm.2023.04.003.