Deciphering the complexity of COVID-19 transmission: Unveiling precision through robust vaccination policies and advanced predictive modeling with random forest regression
Vol 8, Issue 8, 2024
VIEWS - 313 (Abstract)
Abstract
Keywords
Full Text:
PDFReferences
Adetunji, C. O., Olaniyan, O. P., Adeyomoye, O., et al. (2022). Machine learning approaches for COVID-19 pandemic. In: Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis. Springer.
Ahamad, Md. M., Aktar, S., Rashed-Al-Mahfuz, Md., et al. (2020). A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert Systems with Applications, 160, 113661. https://doi.org/10.1016/j.eswa.2020.113661
Araújo, J. L. de, Oliveira, K. K. D. de, & Freitas, R. J. M. de. (2020). In defense of the Unified Health System in the context of SARS-CoV-2 pandemic. Revista Brasileira de Enfermagem, 73(suppl 2). https://doi.org/10.1590/0034-7167-2020-0247
Ardabili, S., Mosavi, A., Ghamisi, P., et al. (2020). COVID-19 Outbreak Prediction with Machine Learning. Algorithms, 13(10), 249. https://doi.org/10.3390/a13100249
Argirova, R., & Zlatareva, A. (2023). Lifelong vaccination model: for a better quality of life. Biotechnology & Biotechnological Equipment, 37(1), 24–33. https://doi.org/10.1080/13102818.2022.2151379
Arvind, K. S., Vanitha, S., & Suganya, K. S. (2023). Pandemic Management Using Internet of Things and Big Data – A Security and Privacy Perspective. IoT and Big Data Analytics for Smart Cities, 159–173. https://doi.org/10.1201/9781003217404-8
Bai, X., Fang, C., Zhou, Y., et al. (2020). Predicting COVID-19 Malignant Progression with AI Techniques. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3557984
Ballı, S. (2021). Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods. Chaos, Solitons & Fractals, 142, 110512. https://doi.org/10.1016/j.chaos.2020.110512
Bian, L., Gao, F., Zhang, J., et al. (2021). Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Review of Vaccines, 20(4), 365–373. https://doi.org/10.1080/14760584.2021.1903879
Buitrago-Garcia, D., Egli-Gany, D., Counotte, M. J., et al. (2020). Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLOS Medicine, 17(9), e1003346. https://doi.org/10.1371/journal.pmed.1003346
Campos, D. M. de O., Fulco, U. L., de Oliveira, C. B. S., et al. (2020). SARS‐CoV‐2 virus infection: Targets and antiviral pharmacological strategies. Journal of Evidence-Based Medicine, 13(4), 255–260. Portico. https://doi.org/10.1111/jebm.12414
Cevik, M., Kuppalli, K., Kindrachuk, J., et al. (2020). Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ, m3862. https://doi.org/10.1136/bmj.m3862
Cevik, M., Marcus, J. L., Buckee, C., et al. (2021). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission Dynamics Should Inform Policy. Clinical Infectious Diseases, 73(Supplement_2), S170–S176. https://doi.org/10.1093/cid/ciaa1442
Chasapis, C. T., Perlepes, S. P., Bjørklund, G., et al. (2023). Structural modeling of protein ensembles between E3 RING ligases and SARS-CoV-2: The role of zinc binding domains. Journal of Trace Elements in Medicine and Biology, 75, 127089. https://doi.org/10.1016/j.jtemb.2022.127089
Choi, Y., Tuel, A., & Eltahir, E. A. B. (2021). On the Environmental Determinants of COVID‐19 Seasonality. GeoHealth, 5(6). Portico. https://doi.org/10.1029/2021gh000413
Coro, G. (2020). A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate. Ecological Modelling, 431, 109187. https://doi.org/10.1016/j.ecolmodel.2020.109187
Evensen, G., Amezcua, J., Bocquet, M., et al. (2021). An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 3(3), 413. https://doi.org/10.3934/fods.2021001
Fawagreh, K., Gaber, M. M., & Elyan, E. (2014). Random forests: from early developments to recent advancements. Systems Science & Control Engineering, 2(1), 602–609. https://doi.org/10.1080/21642583.2014.956265
Fong, S. J., Li, G., Dey, N., et al. (2020). Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Applied Soft Computing, 93, 106282. https://doi.org/10.1016/j.asoc.2020.106282
Haque, S. M., Ashwaq, O., Sarief, A., et al. (2020). A comprehensive review about SARS-CoV-2. Future Virology, 15(9), 625–648. https://doi.org/10.2217/fvl-2020-0124
Hu, B., Guo, H., Zhou, P., et al. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-020-00459-7
Hussein, H. A., Abdulazeez, A. M. (2021). COVID-19 pandemic datasets based on machine learning clustering algorithms: a review. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18, 2672–700.
Jones, T. C., Biele, G., Mühlemann, B., et al. (2021). Estimating infectiousness throughout SARS-CoV-2 infection course. Science, 373(6551). https://doi.org/10.1126/science.abi5273
Kandikattu, H. K., Manohar, M., Verma, A. K., et al. (2021). Macrophages-induced IL-18–mediated eosinophilia promotes characteristics of pancreatic malignancy. Life Science Alliance, 4(8), e202000979. https://doi.org/10.26508/lsa.202000979
Karadimas, P. (2023). Public Choice Theory: An Explanation of the Pandemic Policy Responses. In: The Covid-19 Pandemic: A Public Choice View. Springer.
Kasting, M. L., Head, K. J., Hartsock, J. A., et al. (2020). Public perceptions of the effectiveness of recommended non-pharmaceutical intervention behaviors to mitigate the spread of SARS-CoV-2. PLOS ONE, 15(11), e0241662. https://doi.org/10.1371/journal.pone.0241662
Krammer, F. (2020). SARS-CoV-2 vaccines in development. Nature, 586(7830), 516–527. https://doi.org/10.1038/s41586-020-2798-3
Kwekha-Rashid, A. S., Abduljabbar, H. N., & Alhayani, B. (2021). Coronavirus disease (COVID-19) cases analysis using machine-learning applications. Applied Nanoscience, 13(3), 2013–2025. https://doi.org/10.1007/s13204-021-01868-7
Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/j.chaos.2020.110059
Liu, Y., Morgenstern, C., Kelly, J., et al. (2021). The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Medicine, 19(1). https://doi.org/10.1186/s12916-020-01872-8
Loey, M., Manogaran, G., Taha, M. H. N., et al. (2021). A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement, 167, 108288. https://doi.org/10.1016/j.measurement.2020.108288
Ludwig, S., & Zarbock, A. (2020). Coronaviruses and SARS-CoV-2: A Brief Overview. Anesthesia & Analgesia, 131(1), 93–96. https://doi.org/10.1213/ane.0000000000004845
Luong, N.-D. M., Guillier, L., Federighi, M., et al. (2023). An agent-based model to simulate SARS-CoV-2 contamination of surfaces and meat cuts in processing plants. International Journal of Food Microbiology, 404, 110321. https://doi.org/10.1016/j.ijfoodmicro.2023.110321
Malik, J. A., Ahmed, S., Mir, A., et al. (2022). The SARS-CoV-2 mutations versus vaccine effectiveness: New opportunities to new challenges. Journal of Infection and Public Health, 15(2), 228–240. https://doi.org/10.1016/j.jiph.2021.12.014
Malki, Z., Atlam, E.-S., Hassanien, A. E., et al. (2020). Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches. Chaos, Solitons & Fractals, 138, 110137. https://doi.org/10.1016/j.chaos.2020.110137
Merow, C., & Urban, M. C. (2020). Seasonality and uncertainty in global COVID-19 growth rates. Proceedings of the National Academy of Sciences, 117(44), 27456–27464. https://doi.org/10.1073/pnas.2008590117
Perelson, A. S., & Ke, R. (2021). Mechanistic Modeling of SARS‐CoV‐2 and Other Infectious Diseases and the Effects of Therapeutics. Clinical Pharmacology & Therapeutics, 109(4), 829–840. Portico. https://doi.org/10.1002/cpt.2160
Poole, L. (2020). Seasonal Influences On The Spread Of SARS-CoV-2 (COVID19), Causality, and Forecastabililty (3-15-2020). SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3554746
Purssell, E., and Gould, D. (2023). Infection Prevention and Control in Healthcare Settings. John Wiley & Sons.
Putra, K. A., & Drajati, N. A. (2023). Moving ahead: Challenges and opportunities for teachers in post-pandemic pedagogy. Teacher Education and Teacher Professional Development in the COVID-19 Turn, 3–8. https://doi.org/10.1201/9781003347798-1
Qiang, X.-L., Xu, P., Fang, G., et al. (2020). Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus. Infectious Diseases of Poverty, 9(1). https://doi.org/10.1186/s40249-020-00649-8
Rahman, M. M., Islam, Md. M., Manik, Md. M. H., et al. (2021). Machine Learning Approaches for Tackling Novel Coronavirus (COVID-19) Pandemic. SN Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00774-7
Reme, B.-A., Gjesvik, J., & Magnusson, K. (2023). Predictors of the post-COVID condition following mild SARS-CoV-2 infection. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41541-x
Rian, K., Esteban-Medina, M., Hidalgo, M. R., et al. (2021). Mechanistic modeling of the SARS-CoV-2 disease map. BioData Mining, 14(1). https://doi.org/10.1186/s13040-021-00234-1
Ruffieux, H., Hanson, A. L., Lodge, S., et al. (2023). A patient-centric modeling framework captures recovery from SARS-CoV-2 infection. Nature Immunology, 24(2), 349–358. https://doi.org/10.1038/s41590-022-01380-2
Ryan, J. M. (2023). COVID-19: Surviving a Pandemic. Routledge. https://doi.org/10.4324/9781003302698
Ryan, J. M., & Nanda, S. (2023). Pandemic Politics and the Politics of the Pandemic1. COVID-19: Individual Rights and Community Responsibilities, 105–123. https://doi.org/10.4324/9781003302643-7
Saha, I., Ghosh, N., Maity, D., et al. (2021). COVID-DeepPredictor: Recurrent Neural Network to Predict SARS-CoV-2 and Other Pathogenic Viruses. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.569120
Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., et al. (2020). Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art. SN Computer Science, 1(4). https://doi.org/10.1007/s42979-020-00209-9
Shulman, L. M. (2023). Infectious Diseases. In: Encyclopedia of Sustainability Science and Technology Series. Springer. https://doi.org/10.1007/978-1-0716-2463-0
Sultana, J., Kumar Singha, A., Tabrez Siddiqui, S., et al. (2022). COVID-19 Pandemic Prediction and Forecasting Using Machine Learning Classifiers. Intelligent Automation & Soft Computing, 32(2), 1007–1024. https://doi.org/10.32604/iasc.2022.021507
Waheed, Y., Sah, R., & Muhammad, K. (2023). Recent Developments in Vaccines for Viral Diseases. Vaccines, 11(2), 198. https://doi.org/10.3390/vaccines11020198
Wang, S., Pan, Y., Wang, Q., et al. (2020). Modeling the viral dynamics of SARS-CoV-2 infection. Mathematical Biosciences, 328, 108438. https://doi.org/10.1016/j.mbs.2020.108438
Xiang, Y., Jia, Y., Chen, L., et al. (2021). COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models. Infectious Disease Modelling, 6, 324–342. https://doi.org/10.1016/j.idm.2021.01.001
Yang, X.-D., Li, H.-L., & Cao, Y.-E. (2021). Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location. International Journal of Environmental Research and Public Health, 18(2), 484. https://doi.org/10.3390/ijerph18020484
Ye, Z.-W., Yuan, S., Yuen, K. S., et al. (2020). Zoonotic origins of human coronaviruses. International journal of biological sciences, 16, 1686.
DOI: https://doi.org/10.24294/jipd.v8i8.5321
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Suwimon Kooptiwoot, Chaisri Tharasawatpipat, Sivapan Choo-in, Pantip Kayee, Kittikhun Meethongjan, Chanyapat Sangsuwon, Bagher Javadi
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.