Gradient based optimizer with deep learning based agricultural land use and land cover classification on SAR data
Vol 8, Issue 8, 2024
VIEWS - 119 (Abstract) 39 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Addison, P., & Oommen, T. (2018). Utilizing satellite radar remote sensing for burn severity estimation. International Journal of Applied Earth Observation and Geoinformation, 73, 292–299. https://doi.org/10.1016/j.jag.2018.07.002
Ajadi, O. A., Barr, J., Liang, S.-Z., et al. (2021). Large-scale crop type and crop area mapping across Brazil using synthetic aperture radar and optical imagery. International Journal of Applied Earth Observation and Geoinformation, 97, 102294. https://doi.org/10.1016/j.jag.2020.102294
Al-Dujaili, M. J. (2024). An accurate algorithm for land surface changes detection based on deep learning and improved pixel clustering using SAR images. Neural Computing and Applications, 36(10), 5545–5554. https://doi.org/10.1007/s00521-023-09377-0
Allies, A., Roumiguié, A., Dejoux, J.-F., et al. (2021). Evaluation of Multiorbital SAR and Multisensor Optical Data for Empirical Estimation of Rapeseed Biophysical Parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7268–7283. https://doi.org/10.1109/jstars.2021.3095537
Arrechea-Castillo, D. A., Solano-Correa, Y. T., Muñoz-Ordóñez, J. F., et al. (2023). Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning. Remote Sensing, 15(10), 2521. https://doi.org/10.3390/rs15102521
Asmaa, H. F., Abdelfatah, M. A., Gamal, E. F. (2023). Investigating land use land cover changes and their effects on land surface temperature and urban heat islands in Sharqiyah Governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 26(2), 293–306. https://doi.org/10.1016/j.ejrs.2023.04.001
Bhatt, A., & Thakur, V. (2023). An Optimized Deep Belief Network for Land Cover Classification Using Synthetic-Aperture Radar Images and Landsat Images. The Computer Journal, 66(8), 2043–2058. https://doi.org/10.1093/comjnl/bxac077
Chatterjee, A., Mukherjee, J., Aikat, S., et al. (2020). Semi-supervised Classification of Paddy Fields from Dual Polarized Synthetic Aperture Radar (SAR) images using Deep Learning. International Journal of Remote Sensing, 42(5), 1867–1892. https://doi.org/10.1080/01431161.2020.1846223
Chatterjee, A., Saha, J., Mukherjee, J., et al. (2020). Unsupervised Land Cover Classification of Hybrid and Dual-Polarized Images Using Deep Convolutional Neural Network. IEEE Geoscience and Remote Sensing Letters, 18(6), 969–973. https://doi.org/10.1109/lgrs.2020.2993095
Dahhani, S., Raji, M., Hakdaoui, M., et al. (2022). Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape. Remote Sensing, 15(1), 65. https://doi.org/10.3390/rs15010065
Darvishnezhad, M., & Sebt, M. A. (2023). A novel self-supervised ensemble learning framework for land use and land cover classification of polarimetric synthetic aperture radar images. IET Radar, Sonar & Navigation, 18(3), 379–409. https://doi.org/10.1049/rsn2.12484
Debella-Gilo, M., & Gjertsen, A. K. (2021). Mapping Seasonal Agricultural Land Use Types Using Deep Learning on Sentinel-2 Image Time Series. Remote Sensing, 13(2), 289. https://doi.org/10.3390/rs13020289
Di Martino, T., Guinvarc’h, R., Thirion-Lefevre, L., et al. (2023). FARMSAR: Fixing AgRicultural Mislabels Using Sentinel-1 Time Series and AutoencodeRs. Remote Sensing, 15(1), 35. https://doi.org/10.3390/rs15010035
Fondaj, J., Hamiti, M., Krrabaj, S., et al. (2023). Proposal of Prediction Model for Smart Agriculture Based on IoT Sensor Data. 2023 46th MIPRO ICT and Electronics Convention (MIPRO). https://doi.org/10.23919/mipro57284.2023.10159955
Garg, R., Kumar, A., Prateek, M., et al. (2022). Land cover classification of spaceborne multifrequency SAR and optical multispectral data using machine learning. Advances in Space Research, 69(4), 1726–1742. https://doi.org/10.1016/j.asr.2021.06.028
Ghaffarian, S., Valente, J., van der Voort, M., et al. (2021). Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sensing, 13(15), 2965. https://doi.org/10.3390/rs13152965
Höhl, A., Obadic, I., Torres, M. Á. F., et al. (2024). Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing, arXiv:2402.13791.
Hosseiny, B., Abdi, A. M., & Jamali, S. (2022). Urban land use and land cover classification with interpretable machine learning—A case study using Sentinel-2 and auxiliary data. Remote Sensing Applications: Society and Environment, 28, 100843. https://doi.org/10.1016/j.rsase.2022.100843
Hosseiny, B., Mahdianpari, M., Brisco, B., et al. (2022). WetNet: A Spatial–Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/tgrs.2021.3113856
Hosseiny, B., Mahdianpari, M., Hemati, M., et al. (2024). Beyond Supervised Learning in Remote Sensing: A Systematic Review of Deep Learning Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 1035–1052. https://doi.org/10.1109/jstars.2023.3316733
Huang, Y., Meng, M., Hou, Z., et al. (2023). Land Cover Classification of SAR Based on 1DCNN-MRF Model Using Improved Dual-Polarization Radar Vegetation Index. Remote Sensing, 15(13), 3221. https://doi.org/10.3390/rs15133221
Jang, D., Lee, J., & Lee, J. S. (2023). Web-based synthetic-aperture radar data management system and land cover classification. (2023). KSII Transactions on Internet and Information Systems, 17(7). https://doi.org/10.3837/tiis.2023.07.007
Kraatz, S., Torbick, N., Jiao, X., et al. (2021). Comparison between Dense L-Band and C-Band Synthetic Aperture Radar (SAR) Time Series for Crop Area Mapping over a NISAR Calibration-Validation Site. Agronomy, 11(2), 273. https://doi.org/10.3390/agronomy11020273
Lapini, A., Fontanelli, G., Pettinato, S., et al. (2020). Application of Deep Learning to Optical and SAR Images for the Classification of Agricultural Areas in Italy. In: Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/igarss39084.2020.9323190
Li, J., Zhang, X., Yao, Y., et al. (2024). Regularized Extreme Learning Machine Based on Remora Optimization Algorithm for Printed Matter Illumination Correction. IEEE Access, 12, 3718–3735. https://doi.org/10.1109/access.2024.3349421
Manderna, A., Kumar, S., Dohare, U., et al. (2023). Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors, 23(21), 8772. https://doi.org/10.3390/s23218772
Mitchard, E. T. A., Meir, P., Ryan, C. M., et al. (2013). A novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique. Plant Ecology & Diversity, 6(1), 159–170. https://doi.org/10.1080/17550874.2012.695814
Moran, M. S., Peters-Lidard, C. D., Watts, J. M., et al. (2004). Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian Journal of Remote Sensing, 30(5), 805–826. https://doi.org/10.5589/m04-043
Mucsi, L., & Bui, D. H. (2023). Evaluating the performance of multi-temporal synthetic-aperture radar imagery in land-cover mapping using a forward stepwise selection approach. Remote Sensing Applications: Society and Environment, 30, 100975. https://doi.org/10.1016/j.rsase.2023.100975
Ngo, K. D., Lechner, A. M., & Vu, T. T. (2020). Land cover mapping of the Mekong Delta to support natural resource management with multi-temporal Sentinel-1A synthetic aperture radar imagery. Remote Sensing Applications: Society and Environment, 17, 100272. https://doi.org/10.1016/j.rsase.2019.100272
Niedbała, G., Piekutowska, M., & Hara, P. (2023). New Trends and Challenges in Precision and Digital Agriculture. Agronomy, 13(8), 2136. https://doi.org/10.3390/agronomy13082136
Sameh, S., Zarzoura, F. H., & El-Mewafi, M. (2023). Spatiotemporal analysis of Urban Heat Island and land use land cover changes using Landsat images and CA-ANN machine learning techniques: a case study of Dakahlia government, Egypt. Journal of Spatial Science, 1–22. https://doi.org/10.1080/14498596.2023.2257619
Sameh, S., Zarzoura, F., & El-Mewafi, M. (2022). Automated Mapping of Urban Heat Island to Predict Land Surface Temperature and Land use/cover Change Using Machine Learning Algorithms: Mansoura City. International Journal of Geoinformatics, 18(6), 47–67.
Sánchez-Crespo, F. A., Gómez-Villarino, M. T., Gallego, E., et al. (2023). Monitoring of Water and Tillage Soil Erosion in Agricultural Basins, a Comparison of Measurements Acquired by Differential Interferometric Analysis of Sentinel TopSAR Images and a Terrestrial LIDAR System. Land, 12(2), 408. https://doi.org/10.3390/land12020408
Šćepanović, S., Antropov, O., Laurila, P., et al. (2021). Wide-Area Land Cover Mapping with Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10357–10374. https://doi.org/10.1109/jstars.2021.3116094
Solórzano, J. V., Mas, J. F., Gao, Y., et al. (2021). Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery. Remote Sensing, 13(18), 3600. https://doi.org/10.3390/rs13183600
Stabel, E., & Fischer, P. (2001). Satellite radar interferometric products for the urban application domain. Advances in Environmental Research, 5(4), 425–433.
Stateczny, A., Bolugallu, S. M., Divakarachari, P. B., et al. (2022). Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification. Remote Sensing, 14(19), 4837. https://doi.org/10.3390/rs14194837
Vali, A., Comai, S., & Matteucci, M. (2020). Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sensing, 12(15), 2495. https://doi.org/10.3390/rs12152495
Wang, H., & Zhang, X. (2024). Fault Diagnosis Using Imbalanced Data of Rolling Bearings Based on a Deep Migration Model. IEEE Access, 12, 5517–5533. https://doi.org/10.1109/access.2024.3350785
Wu, X., Hong, D., & Chanussot, J. (2022). Convolutional Neural Networks for Multimodal Remote Sensing Data Classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–10. https://doi.org/10.1109/tgrs.2021.3124913
DOI: https://doi.org/10.24294/jipd.v8i8.4488
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Azween Abdullah, Daniel Arockiam, Valliappan Raju
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.