Gradient based optimizer with deep learning based agricultural land use and land cover classification on SAR data

Azween Abdullah, Daniel Arockiam, Valliappan Raju

Article ID: 4488
Vol 8, Issue 8, 2024

VIEWS - 119 (Abstract) 39 (PDF)

Abstract


Agricultural land use and land cover (LULC) classification using synthetic aperture radar (SAR) data is a fundamental application in remote sensing and precision agriculture. Leveraging the abilities of SAR, which can enter over cloud cover and deliver detailed data about surface features, allows a robust analysis of agricultural landscapes. By harnessing the control of SAR data and innovative deep learning (DL) methods, this technique provides a complete solution for effectual and automatic agricultural land classification, paving the method for informed decision-making in present farming systems. This study introduces a new gradient based optimizer with deep learning based agricultural land use and land cover classification (GBODL-ALULC) technique on SAR data. The GBODL-ALULC technique aims to detect and classify distinct types of land cover that exist in the SAR data. In the GBODL-ALULC technique, the feature extraction process takes place by a residual network with a convolutional block attention mechanism (ResNet-CBAM) model. At the same time, the GBO system has been executed for the best hyperparameter choice of the ResNet-CBAM model which helps to improve the overall LULC classification results. Finally, a regularized extreme learning machine (RELM) algorithm has been for the detection and classification of land covers. The performance study of the GBODL-ALULC method is carried out on the SAR dataset. The simulation outcome depicted that the GBODL-ALULC methodology reaches effectual LULC classification outcomes over compared methods.

Keywords


land use and land cover; synthetic aperture radar; gradient based optimizer; deep learning; residual network

Full Text:

PDF


References


Addison, P., & Oommen, T. (2018). Utilizing satellite radar remote sensing for burn severity estimation. International Journal of Applied Earth Observation and Geoinformation, 73, 292–299. https://doi.org/10.1016/j.jag.2018.07.002

Ajadi, O. A., Barr, J., Liang, S.-Z., et al. (2021). Large-scale crop type and crop area mapping across Brazil using synthetic aperture radar and optical imagery. International Journal of Applied Earth Observation and Geoinformation, 97, 102294. https://doi.org/10.1016/j.jag.2020.102294

Al-Dujaili, M. J. (2024). An accurate algorithm for land surface changes detection based on deep learning and improved pixel clustering using SAR images. Neural Computing and Applications, 36(10), 5545–5554. https://doi.org/10.1007/s00521-023-09377-0

Allies, A., Roumiguié, A., Dejoux, J.-F., et al. (2021). Evaluation of Multiorbital SAR and Multisensor Optical Data for Empirical Estimation of Rapeseed Biophysical Parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7268–7283. https://doi.org/10.1109/jstars.2021.3095537

Arrechea-Castillo, D. A., Solano-Correa, Y. T., Muñoz-Ordóñez, J. F., et al. (2023). Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning. Remote Sensing, 15(10), 2521. https://doi.org/10.3390/rs15102521

Asmaa, H. F., Abdelfatah, M. A., Gamal, E. F. (2023). Investigating land use land cover changes and their effects on land surface temperature and urban heat islands in Sharqiyah Governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 26(2), 293–306. https://doi.org/10.1016/j.ejrs.2023.04.001

Bhatt, A., & Thakur, V. (2023). An Optimized Deep Belief Network for Land Cover Classification Using Synthetic-Aperture Radar Images and Landsat Images. The Computer Journal, 66(8), 2043–2058. https://doi.org/10.1093/comjnl/bxac077

Chatterjee, A., Mukherjee, J., Aikat, S., et al. (2020). Semi-supervised Classification of Paddy Fields from Dual Polarized Synthetic Aperture Radar (SAR) images using Deep Learning. International Journal of Remote Sensing, 42(5), 1867–1892. https://doi.org/10.1080/01431161.2020.1846223

Chatterjee, A., Saha, J., Mukherjee, J., et al. (2020). Unsupervised Land Cover Classification of Hybrid and Dual-Polarized Images Using Deep Convolutional Neural Network. IEEE Geoscience and Remote Sensing Letters, 18(6), 969–973. https://doi.org/10.1109/lgrs.2020.2993095

Dahhani, S., Raji, M., Hakdaoui, M., et al. (2022). Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape. Remote Sensing, 15(1), 65. https://doi.org/10.3390/rs15010065

Darvishnezhad, M., & Sebt, M. A. (2023). A novel self-supervised ensemble learning framework for land use and land cover classification of polarimetric synthetic aperture radar images. IET Radar, Sonar & Navigation, 18(3), 379–409. https://doi.org/10.1049/rsn2.12484

Debella-Gilo, M., & Gjertsen, A. K. (2021). Mapping Seasonal Agricultural Land Use Types Using Deep Learning on Sentinel-2 Image Time Series. Remote Sensing, 13(2), 289. https://doi.org/10.3390/rs13020289

Di Martino, T., Guinvarc’h, R., Thirion-Lefevre, L., et al. (2023). FARMSAR: Fixing AgRicultural Mislabels Using Sentinel-1 Time Series and AutoencodeRs. Remote Sensing, 15(1), 35. https://doi.org/10.3390/rs15010035

Fondaj, J., Hamiti, M., Krrabaj, S., et al. (2023). Proposal of Prediction Model for Smart Agriculture Based on IoT Sensor Data. 2023 46th MIPRO ICT and Electronics Convention (MIPRO). https://doi.org/10.23919/mipro57284.2023.10159955

Garg, R., Kumar, A., Prateek, M., et al. (2022). Land cover classification of spaceborne multifrequency SAR and optical multispectral data using machine learning. Advances in Space Research, 69(4), 1726–1742. https://doi.org/10.1016/j.asr.2021.06.028

Ghaffarian, S., Valente, J., van der Voort, M., et al. (2021). Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sensing, 13(15), 2965. https://doi.org/10.3390/rs13152965

Höhl, A., Obadic, I., Torres, M. Á. F., et al. (2024). Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing, arXiv:2402.13791.

Hosseiny, B., Abdi, A. M., & Jamali, S. (2022). Urban land use and land cover classification with interpretable machine learning—A case study using Sentinel-2 and auxiliary data. Remote Sensing Applications: Society and Environment, 28, 100843. https://doi.org/10.1016/j.rsase.2022.100843

Hosseiny, B., Mahdianpari, M., Brisco, B., et al. (2022). WetNet: A Spatial–Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/tgrs.2021.3113856

Hosseiny, B., Mahdianpari, M., Hemati, M., et al. (2024). Beyond Supervised Learning in Remote Sensing: A Systematic Review of Deep Learning Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 1035–1052. https://doi.org/10.1109/jstars.2023.3316733

Huang, Y., Meng, M., Hou, Z., et al. (2023). Land Cover Classification of SAR Based on 1DCNN-MRF Model Using Improved Dual-Polarization Radar Vegetation Index. Remote Sensing, 15(13), 3221. https://doi.org/10.3390/rs15133221

Jang, D., Lee, J., & Lee, J. S. (2023). Web-based synthetic-aperture radar data management system and land cover classification. (2023). KSII Transactions on Internet and Information Systems, 17(7). https://doi.org/10.3837/tiis.2023.07.007

Kraatz, S., Torbick, N., Jiao, X., et al. (2021). Comparison between Dense L-Band and C-Band Synthetic Aperture Radar (SAR) Time Series for Crop Area Mapping over a NISAR Calibration-Validation Site. Agronomy, 11(2), 273. https://doi.org/10.3390/agronomy11020273

Lapini, A., Fontanelli, G., Pettinato, S., et al. (2020). Application of Deep Learning to Optical and SAR Images for the Classification of Agricultural Areas in Italy. In: Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/igarss39084.2020.9323190

Li, J., Zhang, X., Yao, Y., et al. (2024). Regularized Extreme Learning Machine Based on Remora Optimization Algorithm for Printed Matter Illumination Correction. IEEE Access, 12, 3718–3735. https://doi.org/10.1109/access.2024.3349421

Manderna, A., Kumar, S., Dohare, U., et al. (2023). Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors, 23(21), 8772. https://doi.org/10.3390/s23218772

Mitchard, E. T. A., Meir, P., Ryan, C. M., et al. (2013). A novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique. Plant Ecology & Diversity, 6(1), 159–170. https://doi.org/10.1080/17550874.2012.695814

Moran, M. S., Peters-Lidard, C. D., Watts, J. M., et al. (2004). Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian Journal of Remote Sensing, 30(5), 805–826. https://doi.org/10.5589/m04-043

Mucsi, L., & Bui, D. H. (2023). Evaluating the performance of multi-temporal synthetic-aperture radar imagery in land-cover mapping using a forward stepwise selection approach. Remote Sensing Applications: Society and Environment, 30, 100975. https://doi.org/10.1016/j.rsase.2023.100975

Ngo, K. D., Lechner, A. M., & Vu, T. T. (2020). Land cover mapping of the Mekong Delta to support natural resource management with multi-temporal Sentinel-1A synthetic aperture radar imagery. Remote Sensing Applications: Society and Environment, 17, 100272. https://doi.org/10.1016/j.rsase.2019.100272

Niedbała, G., Piekutowska, M., & Hara, P. (2023). New Trends and Challenges in Precision and Digital Agriculture. Agronomy, 13(8), 2136. https://doi.org/10.3390/agronomy13082136

Sameh, S., Zarzoura, F. H., & El-Mewafi, M. (2023). Spatiotemporal analysis of Urban Heat Island and land use land cover changes using Landsat images and CA-ANN machine learning techniques: a case study of Dakahlia government, Egypt. Journal of Spatial Science, 1–22. https://doi.org/10.1080/14498596.2023.2257619

Sameh, S., Zarzoura, F., & El-Mewafi, M. (2022). Automated Mapping of Urban Heat Island to Predict Land Surface Temperature and Land use/cover Change Using Machine Learning Algorithms: Mansoura City. International Journal of Geoinformatics, 18(6), 47–67.

Sánchez-Crespo, F. A., Gómez-Villarino, M. T., Gallego, E., et al. (2023). Monitoring of Water and Tillage Soil Erosion in Agricultural Basins, a Comparison of Measurements Acquired by Differential Interferometric Analysis of Sentinel TopSAR Images and a Terrestrial LIDAR System. Land, 12(2), 408. https://doi.org/10.3390/land12020408

Šćepanović, S., Antropov, O., Laurila, P., et al. (2021). Wide-Area Land Cover Mapping with Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10357–10374. https://doi.org/10.1109/jstars.2021.3116094

Solórzano, J. V., Mas, J. F., Gao, Y., et al. (2021). Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery. Remote Sensing, 13(18), 3600. https://doi.org/10.3390/rs13183600

Stabel, E., & Fischer, P. (2001). Satellite radar interferometric products for the urban application domain. Advances in Environmental Research, 5(4), 425–433.

Stateczny, A., Bolugallu, S. M., Divakarachari, P. B., et al. (2022). Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification. Remote Sensing, 14(19), 4837. https://doi.org/10.3390/rs14194837

Vali, A., Comai, S., & Matteucci, M. (2020). Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sensing, 12(15), 2495. https://doi.org/10.3390/rs12152495

Wang, H., & Zhang, X. (2024). Fault Diagnosis Using Imbalanced Data of Rolling Bearings Based on a Deep Migration Model. IEEE Access, 12, 5517–5533. https://doi.org/10.1109/access.2024.3350785

Wu, X., Hong, D., & Chanussot, J. (2022). Convolutional Neural Networks for Multimodal Remote Sensing Data Classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–10. https://doi.org/10.1109/tgrs.2021.3124913




DOI: https://doi.org/10.24294/jipd.v8i8.4488

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Azween Abdullah, Daniel Arockiam, Valliappan Raju

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.