References
Tantray JA, Mansoor S, Wani RFC, Nissa NU. RNA isolation from plant tissues. In: Basic Life Science Methods. Academic Press; 2022. pp. 123–125. doi: 10.1016/B978-0-443-19174-9.00028-3
Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, et al. Salt tolerance involved candidate genes in rice: An integrative meta-analysis approach. BMC Plant Biology 2020; 20: 452. doi: 10.1186/s12870-020-02679-8
Mangrauthia SK, Agarwal S, Sailaja B, et al. MicroRNAs and their role in salt stress response in plants. In: Ahmad P, Azooz MM, Prasad MNV (editors). Salt Stress in plants: Signalling, Omics and Adaptations. Springer; 2013. pp. 15–46. doi: 10.1007/978-1-4614-6108-1_2
Wahengbam ED, Devi CP, Sharma SK, et al. Reactive oxygen species turnover, phenolics metabolism, and some key gene expressions modulate postharvest physiological deterioration in cassava tubers. Frontiers in Microbiology 2023; 14: 1148464. doi: 10.3389/fmicb.2023.1148464
Gupta OP, Singh AK, Singh A, et al. Wheat biofortification: Utilizing natural genetic diversity, genome-wide association mapping, genomic selection, and genome editing technologies. Frontiers in Nutrition 2022; 9: 826131. doi: 10.3389/fnut.2022.826131
Arimura GI. Making sense of the way plants sense herbivores. Trends in Plant Science 2021; 26(3): 288–298. doi: 10.1016/j.tplants.2020.11.001
He G, Elling AA, Deng XW. The epigenome and plant development. Annual Review of Plant Biology 2011; 62: 411–435.
Zang X, Geng X, Wang F, et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology 2017; 17: 14. doi: 10.1186/s12870-016-0958-2
Chaiwong N, Pusadee T, Jamjod S, Prom-U-Thai C. Silicon application promotes productivity, silicon accumulation and upregulates silicon transporter gene expression in rice. Plants 2022; 11(7): 989. doi: 10.3390/plants11070989
Tiong J, McDonald GK, Genc Y, et al. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytologist 2014; 201(1): 131–143. doi: 10.1111/nph.12468
Ji Y, Lu X, Zhang H, et al. Transcriptome reveals the dynamic response mechanism of pearl millet roots under drought stress. Genes 2021; 12(12): 1988. doi: 10.3390/genes12121988
Guo R, Qiao H, Zhao J, et al. The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Frontiers in Plant Science 2018; 9: 545. doi: 10.3389/fpls.2018.00545
Rasheed A, Jie H, Ali B, et al. Breeding drought-tolerant maize (Zea mays) using molecular breeding tools: Recent advancements and future prospective. Agronomy 2023; 13(6): 1459. doi: 10.3390/agronomy13061459
Liu B, Yu H, Yang Q, et al. Zinc transporter ZmLAZ1-4 modulates zinc homeostasis on plasma and vacuolar membrane in maize. Frontiers in Plant Science 2022; 13: 881055. doi: 10.3389/fpls.2022.881055
Jha UC, Nayyar H, Palakurthi R, et al. Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Frontiers in Plant Science 2021; 12: 655103. doi: 10.3389/fpls.2021.655103
Das S, Bansal M. Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One 2019; 14(3): e0212678. doi: 10.1371/journal.pone.0212678
Xie F, Stewart CN Jr, Taki FA, et al. High‐throughput deep sequencing shows that micro RNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnology Journal 2014; 12(3): 354–366. doi: 10.1111/pbi.12142
Rolly NK, Imran QM, Lee IJ, Yun BW. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana. International Journal of Molecular Sciences 2020; 21(5): 1726. doi: 10.3390/ijms21051726
Chaudhry UK, Gökçe ZNÖ, Gökçe AF. The influence of salinity stress on plants and their molecular mechanisms. Biology and Life Sciences Forum2021; 11(1): 31. doi: 10.3390/IECPS2021-12017
Kidokoro S, Watanabe K, Ohori T, et al. Soybean DREB 1/CBF‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. The Plant Journal 2015; 81(3): 505–518. doi: 10.1111/tpj.12746
Sharma S, Kaur G, Kumar A, et al. Gene expression pattern of vacuolar-iron transporter-like (VTL) genes in hexaploid wheat during metal stress. Plants 2020; 9(2): 229. doi: 10.3390/plants9020229
Roeber VM, Bajaj I, Rohde M, et al. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant, Cell & Environment 2021; 44(3): 645–664. doi: 10.1111/pce.13948
Huang LZ, Zhou M, Ding YF, Zhu C. Gene networks involved in plant heat stress response and tolerance. International Journal of Molecular Sciences 2022; 23(19): 11970. doi: 10.3390/ijms231911970
Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences 2000; 97(12): 6896–6901. doi: 10.1073/pnas.120170197
Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science 2019; 10: 228. doi: 10.3389/fpls.2019.00228
Surabhi GK, Badajena B. Recent advances in plant heat stress transcription factors. In: Transcription Factors for Abiotic Stress Tolerance in Plants. Academic Press; 2020. pp. 153–200. doi: 10.1016/B978-0-12-819334-1.00010-1
Poli Y, Basava RK, Panigrahy M, et al. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice 2013; 6: 36. doi: 10.1186/1939-8433-6-36
Yang X, Ma N, Yang L, et al. Two Rab GTPases play different roles in conidiation, trap formation, stress resistance, and virulence in the nematode-trapping fungus Arthrobotrys oligospora. Applied Microbiology and Biotechnology 2018; 102: 4601–4613. doi: 10.1007/s00253-018-8929-1
Yolcu S, Alavilli H, Ganesh P, et al. Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). Plants 2021; 10(9): 1843. doi: 10.3390/plants10091843
Wang X, Wang H, Liu S, et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics 2016; 48: 1233–1241. doi: 10.1038/ng.3636
Wang J, Li C, Li L, et al. Exploitation of drought tolerance-related genes for crop improvement. International Journal of Molecular Sciences 2021; 22(19): 10265. doi: 10.3390/ijms221910265
Manasa SL, Panigrahy M, Panigrahi KCS, Rout GR. Overview of cold stress regulation in plants. The Botanical Review 2022; 88: 359–387. doi: 10.1007/s12229-021-09267-x
Adhikari L, Baral R, Paudel D, et al. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress 2022; 4: 100081. doi: 10.1016/j.stress.2022.100081
Jha UC, Bohra A, Jha R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Reports 2017; 36: 1–35. doi: 10.1007/s00299-016-2073-0
Rout GR, Sahoo S. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 2015; 3: 1–24. doi: 10.7831/ras.3.1
Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (editors). Sustainable Agriculture. Springer; 2009. pp. 873–884. doi: 10.1007/978-90-481-2666-8_53
Li S, Zhou X, Huang Y, et al. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology 2013; 13: 114. doi: 10.1186/1471-2229-13-114
Pilon-Smits E. Phytoremediation. Annual Review of Plant Biology 2005; 56: 15–39. doi: 10.1146/annurev.arplant.56.032604.144214
Haydon MJ, Cobbett CS. Transporters of ligands for essential metal ions in plants. New Phytologist 2007; 174(3): 499–506. doi: 10.1111/j.1469-8137.2007.02051.x
Talke IN, Hanikenne M, Krämer U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 2006; 142(1): 148–167. doi: 10.1104/pp.105.076232
Colangelo EP, Guerinot ML. Put the metal to the petal: Metal uptake and transport throughout plants. Current Opinion in Plant Biology 2006; 9(3): 322–330. doi: 10.1016/j.pbi.2006.03.015
Wang T, Li Y, Fu Y, et al. Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.). Frontiers in Plant Science 2019; 10: 1081. doi: 10.3389/fpls.2019.01081
Joudeh N, Saragliadis A, Schulz C, et al. Transcriptomic response analysis of Escherichia coli to palladium stress. Frontiers in Microbiology 2021; 12: 741836. doi: 10.3389/fmicb.2021.741836
Tiwari S, Lata C. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science 2018; 9: 452. doi: 10.3389/fpls.2018.00452
Ramesh SA, Shin R, Eide DJ, Schachtman DP. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology 2003; 133(1): 126–134. doi: 10.1104/pp.103.026815
Panigrahy M, Rao DN, Sarla N. Molecular mechanisms in response to phosphate starvation in rice. Biotechnology Advances 2009; 27(4): 389–397. doi: 10.1016/j.biotechadv.2009.02.006
Bournier M, Tissot N, Mari S, et al. Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. Journal of Biological Chemistry 2013; 288(31): 22670–22680. doi: 10.1074/jbc.M113.482281
Hara T, Takeda T, Takagishi T, et al. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. The Journal of Physiological Sciences 2017; 67: 283–301. doi: 10.1007/s12576-017-0521-4
Ma JF. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 2004; 50(1): 11–18. doi: 10.1080/00380768.2004.10408447
Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science 2006; 11(8): 392–397. doi: 10.1016/j.tplants.2006.06.007
Ma JF, Yamaji N, Tamai K, Mitani N. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiology 2007; 145(3): 919–924. doi: 10.1104/pp.107.107599
Ma XQ, Zhu DY, Li SP, et al. Authentic identification of stigma Croci (stigma of Crocus sativus) from its adulterants by molecular genetics analysis. Planta Medica2001;67(2): 183–186. doi: 10.1055/s-2001-11533
Ma JF, Yamaji N. A cooperative system of silicon transport in plants. Trends in Plant Science 2015; 20(7): 435–442. doi: 10.1016/j.tplants.2015.04.007
Swain R, Rout GR. Silicon in agriculture. In: Lichtfouse E (editor). Sustainable Agriculture Reviews. Springer; 2017.pp. 233–260. doi: 10.1007/978-3-319-58679-3_8
Swain R, Rout GR. Effect of Silicon interaction with nutrients of rice. Journal of Experimental Biology and Agricultural Sciences 2018;6(4): 717–731. doi: 10.18006/2018.6(4).717.731
Yamaji N, Mitatni N, Ma JF. A transporter regulating silicon distribution in rice shoots. The Plant Cell 2008; 20(5): 1381–1389. doi: 10.1105/tpc.108.059311
Manivannan A, Ahn YK. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science 2017; 8: 1346. doi: 10.3389/fpls.2017.01346
Liang G. Iron uptake, signaling, and sensing in plants. Plant Communications 2022; 3: 100349. doi: 10.1016/j.xplc.2022.100349
Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants. Free Radical Biology and Medicine 2019; 133: 11–20. doi: 10.1016/j.freeradbiomed.2018.10.439
Robertson DN. Modulating plant calcium for better nutrition and stress tolerance. International Scholarly Research Notices 2013; 2013: 952043. doi: 10.1155/2013/952043
Campos FG, Seixas DP, Barzotto GR, et al. Roles of calcium signaling in gene expression and photosynthetic acclimatization of Solanum lycopersicum micro-tom (MT) after mechanical damage. International Journal of Molecular Sciences 2022; 23(21): 13571. doi: 10.3390/ijms232113571
Mao D, Chen J, Tian L, et al. Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. The Plant Cell 2014; 26(5): 2234–2248. doi: 10.1105/tpc.114.124628
Bin M, Yi G, Zhang X. Discovery and characterization of magnesium transporter (MGT) gene family in Citrus sinensis and their role in magnesium deficiency stress. Plant Growth Regulation 2023; 100: 733–746. doi: 10.1007/s10725-023-00973-7
Yan YW, Mao DD, Yang L, et al. Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Frontiers in Plant Science 2018; 9: 274. doi: 10.3389/fpls.2018.00274
Na C, Shuanghua W, Jinglong F, et al. Overexpression of the eggplant (Solanum melongena) NAC family transcription factor SmNAC suppresses resistance to bacterial wilt. Scientific Reports 2016; 6: 31568. doi: 10.1038/srep31568
Li C, Qin J, Huang Y, et al. Verticillium dahliae effector VdCE11 contributes to virulence by promoting accumulation and activity of the aspartic protease GhAP1 from cotton. Microbiology Spectrum 2023; 11(1). doi: 10.1128/spectrum.03547-22
Voitsik AM, Muench S, Deising HB, Voll LM. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. BMC Plant Biology 2013; 13: 85. doi: 10.1186/1471-2229-13-85
Collemare J, Pianfetti M, Houlle AE, et al. Magnaporthe grisea a virulence gene ACE1 belongs to an infection‐specific gene cluster involved in secondary metabolism. New Phytologist 2008; 179(1): 196–208. doi: 10.1111/j.1469-8137.2008.02459.x
Chaure P, Gurr SJ, Spanu P. Stable transformation of Erysiphe graminis an obligate biotrophic pathogen of barley. Nature Biotechnology 2000; 18: 205–207. doi: 10.1038/72666