Regulation of gene expression in plant growth and metabolism: A review

Sansuta Mohanty, Subrat Kumar Mahapatra, Madhumita Dasgupta, Madhusmita Panigrahy, Dhaneswar Swain, Gyana Ranjan Rout

Article ID: 3023
Vol 6, Issue 2, 2023

VIEWS - 212 (Abstract) 154 (PDF)

Abstract


In higher eukaryotes, the genes’ architecture has become an essential determinant of the variation in the number of transcripts (expression level) and the specificity of gene expression in plant tissue under stress conditions. The modern rise in genome-wide analysis accounts for summarizing the essential factors through the translocation of gene networks in a regulatory manner. Stress tolerance genes are in two groups: structural genes, which code for proteins and enzymes that directly protect cells from stress (such as genes for transporters, osmo-protectants, detoxifying enzymes, etc.), and the genes expressed in regulation and signal transduction (such as transcriptional factors (TFs) and protein kinases). The genetic regulation and protein activity arising from plants’ interaction with minerals and abiotic and biotic stresses utilize high-efficiency molecular profiling. Collecting gene expression data concerning gene regulation in plants towards focus predicts an acceptable model for efficient genomic tools. Thus, this review brings insights into modifying the expression study, providing a valuable source for assisting the involvement of genes in plant growth and metabolism-generating gene databases. The manuscript significantly contributes to understanding gene expression and regulation in plants, particularly under stress conditions. Its insights into stress tolerance mechanisms have substantial implications for crop improvement, making it highly relevant and valuable to the field.


Keywords


gene expression; gene complexity; transcription factors; abiotic and biotic stress

Full Text:

PDF


References


1. Tantray JA, Mansoor S, Wani RFC, Nissa NU. RNA isolation from plant tissues. In: Basic Life Science Methods. Academic Press; 2022. pp. 123–125. doi: 10.1016/B978-0-443-19174-9.00028-3

2. Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, et al. Salt tolerance involved candidate genes in rice: An integrative meta-analysis approach. BMC Plant Biology 2020; 20: 452. doi: 10.1186/s12870-020-02679-8

3. Mangrauthia SK, Agarwal S, Sailaja B, et al. MicroRNAs and their role in salt stress response in plants. In: Ahmad P, Azooz MM, Prasad MNV (editors). Salt Stress in plants: Signalling, Omics and Adaptations. Springer; 2013. pp. 15–46. doi: 10.1007/978-1-4614-6108-1_2

4. Wahengbam ED, Devi CP, Sharma SK, et al. Reactive oxygen species turnover, phenolics metabolism, and some key gene expressions modulate postharvest physiological deterioration in cassava tubers. Frontiers in Microbiology 2023; 14: 1148464. doi: 10.3389/fmicb.2023.1148464

5. Gupta OP, Singh AK, Singh A, et al. Wheat biofortification: Utilizing natural genetic diversity, genome-wide association mapping, genomic selection, and genome editing technologies. Frontiers in Nutrition 2022; 9: 826131. doi: 10.3389/fnut.2022.826131

6. Arimura GI. Making sense of the way plants sense herbivores. Trends in Plant Science 2021; 26(3): 288–298. doi: 10.1016/j.tplants.2020.11.001

7. He G, Elling AA, Deng XW. The epigenome and plant development. Annual Review of Plant Biology 2011; 62: 411–435.

8. Zang X, Geng X, Wang F, et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology 2017; 17: 14. doi: 10.1186/s12870-016-0958-2

9. Chaiwong N, Pusadee T, Jamjod S, Prom-U-Thai C. Silicon application promotes productivity, silicon accumulation and upregulates silicon transporter gene expression in rice. Plants 2022; 11(7): 989. doi: 10.3390/plants11070989

10. Tiong J, McDonald GK, Genc Y, et al. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytologist 2014; 201(1): 131–143. doi: 10.1111/nph.12468

11. Ji Y, Lu X, Zhang H, et al. Transcriptome reveals the dynamic response mechanism of pearl millet roots under drought stress. Genes 2021; 12(12): 1988. doi: 10.3390/genes12121988

12. Guo R, Qiao H, Zhao J, et al. The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Frontiers in Plant Science 2018; 9: 545. doi: 10.3389/fpls.2018.00545

13. Rasheed A, Jie H, Ali B, et al. Breeding drought-tolerant maize (Zea mays) using molecular breeding tools: Recent advancements and future prospective. Agronomy 2023; 13(6): 1459. doi: 10.3390/agronomy13061459

14. Liu B, Yu H, Yang Q, et al. Zinc transporter ZmLAZ1-4 modulates zinc homeostasis on plasma and vacuolar membrane in maize. Frontiers in Plant Science 2022; 13: 881055. doi: 10.3389/fpls.2022.881055

15. Jha UC, Nayyar H, Palakurthi R, et al. Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Frontiers in Plant Science 2021; 12: 655103. doi: 10.3389/fpls.2021.655103

16. Das S, Bansal M. Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One 2019; 14(3): e0212678. doi: 10.1371/journal.pone.0212678

17. Xie F, Stewart CN Jr, Taki FA, et al. High‐throughput deep sequencing shows that micro RNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnology Journal 2014; 12(3): 354–366. doi: 10.1111/pbi.12142

18. Rolly NK, Imran QM, Lee IJ, Yun BW. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana. International Journal of Molecular Sciences 2020; 21(5): 1726. doi: 10.3390/ijms21051726

19. Chaudhry UK, Gökçe ZNÖ, Gökçe AF. The influence of salinity stress on plants and their molecular mechanisms. Biology and Life Sciences Forum2021; 11(1): 31. doi: 10.3390/IECPS2021-12017

20. Kidokoro S, Watanabe K, Ohori T, et al. Soybean DREB 1/CBF‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. The Plant Journal 2015; 81(3): 505–518. doi: 10.1111/tpj.12746

21. Sharma S, Kaur G, Kumar A, et al. Gene expression pattern of vacuolar-iron transporter-like (VTL) genes in hexaploid wheat during metal stress. Plants 2020; 9(2): 229. doi: 10.3390/plants9020229

22. Roeber VM, Bajaj I, Rohde M, et al. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant, Cell & Environment 2021; 44(3): 645–664. doi: 10.1111/pce.13948

23. Huang LZ, Zhou M, Ding YF, Zhu C. Gene networks involved in plant heat stress response and tolerance. International Journal of Molecular Sciences 2022; 23(19): 11970. doi: 10.3390/ijms231911970

24. Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences 2000; 97(12): 6896–6901. doi: 10.1073/pnas.120170197

25. Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science 2019; 10: 228. doi: 10.3389/fpls.2019.00228

26. Surabhi GK, Badajena B. Recent advances in plant heat stress transcription factors. In: Transcription Factors for Abiotic Stress Tolerance in Plants. Academic Press; 2020. pp. 153–200. doi: 10.1016/B978-0-12-819334-1.00010-1

27. Poli Y, Basava RK, Panigrahy M, et al. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice 2013; 6: 36. doi: 10.1186/1939-8433-6-36

28. Yang X, Ma N, Yang L, et al. Two Rab GTPases play different roles in conidiation, trap formation, stress resistance, and virulence in the nematode-trapping fungus Arthrobotrys oligospora. Applied Microbiology and Biotechnology 2018; 102: 4601–4613. doi: 10.1007/s00253-018-8929-1

29. Yolcu S, Alavilli H, Ganesh P, et al. Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). Plants 2021; 10(9): 1843. doi: 10.3390/plants10091843

30. Wang X, Wang H, Liu S, et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics 2016; 48: 1233–1241. doi: 10.1038/ng.3636

31. Wang J, Li C, Li L, et al. Exploitation of drought tolerance-related genes for crop improvement. International Journal of Molecular Sciences 2021; 22(19): 10265. doi: 10.3390/ijms221910265

32. Manasa SL, Panigrahy M, Panigrahi KCS, Rout GR. Overview of cold stress regulation in plants. The Botanical Review 2022; 88: 359–387. doi: 10.1007/s12229-021-09267-x

33. Adhikari L, Baral R, Paudel D, et al. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress 2022; 4: 100081. doi: 10.1016/j.stress.2022.100081

34. Jha UC, Bohra A, Jha R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Reports 2017; 36: 1–35. doi: 10.1007/s00299-016-2073-0

35. Rout GR, Sahoo S. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 2015; 3: 1–24. doi: 10.7831/ras.3.1

36. Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (editors). Sustainable Agriculture. Springer; 2009. pp. 873–884. doi: 10.1007/978-90-481-2666-8_53

37. Li S, Zhou X, Huang Y, et al. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology 2013; 13: 114. doi: 10.1186/1471-2229-13-114

38. Pilon-Smits E. Phytoremediation. Annual Review of Plant Biology 2005; 56: 15–39. doi: 10.1146/annurev.arplant.56.032604.144214

39. Haydon MJ, Cobbett CS. Transporters of ligands for essential metal ions in plants. New Phytologist 2007; 174(3): 499–506. doi: 10.1111/j.1469-8137.2007.02051.x

40. Talke IN, Hanikenne M, Krämer U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 2006; 142(1): 148–167. doi: 10.1104/pp.105.076232

41. Colangelo EP, Guerinot ML. Put the metal to the petal: Metal uptake and transport throughout plants. Current Opinion in Plant Biology 2006; 9(3): 322–330. doi: 10.1016/j.pbi.2006.03.015

42. Wang T, Li Y, Fu Y, et al. Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.). Frontiers in Plant Science 2019; 10: 1081. doi: 10.3389/fpls.2019.01081

43. Joudeh N, Saragliadis A, Schulz C, et al. Transcriptomic response analysis of Escherichia coli to palladium stress. Frontiers in Microbiology 2021; 12: 741836. doi: 10.3389/fmicb.2021.741836

44. Tiwari S, Lata C. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science 2018; 9: 452. doi: 10.3389/fpls.2018.00452

45. Ramesh SA, Shin R, Eide DJ, Schachtman DP. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology 2003; 133(1): 126–134. doi: 10.1104/pp.103.026815

46. Panigrahy M, Rao DN, Sarla N. Molecular mechanisms in response to phosphate starvation in rice. Biotechnology Advances 2009; 27(4): 389–397. doi: 10.1016/j.biotechadv.2009.02.006

47. Bournier M, Tissot N, Mari S, et al. Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. Journal of Biological Chemistry 2013; 288(31): 22670–22680. doi: 10.1074/jbc.M113.482281

48. Hara T, Takeda T, Takagishi T, et al. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. The Journal of Physiological Sciences 2017; 67: 283–301. doi: 10.1007/s12576-017-0521-4

49. Ma JF. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 2004; 50(1): 11–18. doi: 10.1080/00380768.2004.10408447

50. Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science 2006; 11(8): 392–397. doi: 10.1016/j.tplants.2006.06.007

51. Ma JF, Yamaji N, Tamai K, Mitani N. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiology 2007; 145(3): 919–924. doi: 10.1104/pp.107.107599

52. Ma XQ, Zhu DY, Li SP, et al. Authentic identification of stigma Croci (stigma of Crocus sativus) from its adulterants by molecular genetics analysis. Planta Medica2001;67(2): 183–186. doi: 10.1055/s-2001-11533

53. Ma JF, Yamaji N. A cooperative system of silicon transport in plants. Trends in Plant Science 2015; 20(7): 435–442. doi: 10.1016/j.tplants.2015.04.007

54. Swain R, Rout GR. Silicon in agriculture. In: Lichtfouse E (editor). Sustainable Agriculture Reviews. Springer; 2017.pp. 233–260. doi: 10.1007/978-3-319-58679-3_8

55. Swain R, Rout GR. Effect of Silicon interaction with nutrients of rice. Journal of Experimental Biology and Agricultural Sciences 2018;6(4): 717–731. doi: 10.18006/2018.6(4).717.731

56. Yamaji N, Mitatni N, Ma JF. A transporter regulating silicon distribution in rice shoots. The Plant Cell 2008; 20(5): 1381–1389. doi: 10.1105/tpc.108.059311

57. Manivannan A, Ahn YK. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science 2017; 8: 1346. doi: 10.3389/fpls.2017.01346

58. Liang G. Iron uptake, signaling, and sensing in plants. Plant Communications 2022; 3: 100349. doi: 10.1016/j.xplc.2022.100349

59. Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants. Free Radical Biology and Medicine 2019; 133: 11–20. doi: 10.1016/j.freeradbiomed.2018.10.439

60. Robertson DN. Modulating plant calcium for better nutrition and stress tolerance. International Scholarly Research Notices 2013; 2013: 952043. doi: 10.1155/2013/952043

61. Campos FG, Seixas DP, Barzotto GR, et al. Roles of calcium signaling in gene expression and photosynthetic acclimatization of Solanum lycopersicum micro-tom (MT) after mechanical damage. International Journal of Molecular Sciences 2022; 23(21): 13571. doi: 10.3390/ijms232113571

62. Mao D, Chen J, Tian L, et al. Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. The Plant Cell 2014; 26(5): 2234–2248. doi: 10.1105/tpc.114.124628

63. Bin M, Yi G, Zhang X. Discovery and characterization of magnesium transporter (MGT) gene family in Citrus sinensis and their role in magnesium deficiency stress. Plant Growth Regulation 2023; 100: 733–746. doi: 10.1007/s10725-023-00973-7

64. Yan YW, Mao DD, Yang L, et al. Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Frontiers in Plant Science 2018; 9: 274. doi: 10.3389/fpls.2018.00274

65. Na C, Shuanghua W, Jinglong F, et al. Overexpression of the eggplant (Solanum melongena) NAC family transcription factor SmNAC suppresses resistance to bacterial wilt. Scientific Reports 2016; 6: 31568. doi: 10.1038/srep31568

66. Li C, Qin J, Huang Y, et al. Verticillium dahliae effector VdCE11 contributes to virulence by promoting accumulation and activity of the aspartic protease GhAP1 from cotton. Microbiology Spectrum 2023; 11(1). doi: 10.1128/spectrum.03547-22

67. Voitsik AM, Muench S, Deising HB, Voll LM. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. BMC Plant Biology 2013; 13: 85. doi: 10.1186/1471-2229-13-85

68. Collemare J, Pianfetti M, Houlle AE, et al. Magnaporthe grisea a virulence gene ACE1 belongs to an infection‐specific gene cluster involved in secondary metabolism. New Phytologist 2008; 179(1): 196–208. doi: 10.1111/j.1469-8137.2008.02459.x

69. Chaure P, Gurr SJ, Spanu P. Stable transformation of Erysiphe graminis an obligate biotrophic pathogen of barley. Nature Biotechnology 2000; 18: 205–207. doi: 10.1038/72666




DOI: https://doi.org/10.24294/th.v6i2.3023

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.