MycoPhylo experiment: Towards understanding how mycorrhiza types and phylogenetic relationships affect soil biodiversity and functioning
Vol 6, Issue 1, 2023
VIEWS - 713 (Abstract) 489 (PDF) 145 (Supp. file)
Abstract
Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
Keywords
References
1. Pan Y, Birdsey RA, Phillips OL, Jackson RB. The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics 2013; 44: 593–622. doi: 10.1146/annurev-ecolsys-110512-135914.
2. Crowther TW, Glick HB, Covey KR, et al. Map-ping tree density at a global scale. Nature 2015; 525: 201–205. doi: 10.1038/nature14967.
3. Parrotta JA, Wildburger C, Mansourian S. Under-standing relationships between biodiversity, car-bon, forests and people: The key to achieving REDD+ objectives. Vienna: International Union of Forest Research Organizations (IUFRO); 2012. p. 161.
4. Scharlemann JP, Tanner EV, Hiederer R, Kapos V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Man-age 2014; 5(1): 81–91. doi: 10.4155/cmt.13.77.
5. Wei X, Shao M, Gale W, Li L. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports 2014; 4: 4062. doi: 10.1038/srep04062.
6. Brockerhoff EG, Jactel H, Parrotta JA, et al. Plan-tation forests and biodiversity: Oxymoron or op-portunity? Biodiversity and Conservation 2008; 17: 925–951. doi: 10.1007/s10531-008-9380-x.
7. Nave LE, Swanston CW, Mishra U, Nadelhoffer KJ. Afforestation effects on soil carbon storage in the United States: A synthesis. Scientific Journal 2013; 77(3): 1035–1047. doi: 10.2136/sssaj2012.0236.
8. Tedersoo L, Sepping J, Morgunov AS, et al. To-wards a co-crediting system for carbon and bio-diversity. Plants, People, Planet 2023. doi: 10.1002/ppp3.10405.
9. Huuskonen S, Domisch T, Finér L, et al. What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem ser-vices in boreal forests in Fennoscandia? Forest Ecology and Management 2021; 479: 118558. doi: 10.1016/j.foreco.2020.118558.
10. Wang X, Hua F, Wang L, et al. The biodiversity benefit of native forests and mixed‐species plan-tations over monoculture plantations. Diversity and Distributions 2019; 25(11): 1721–1735. doi: 10.1111/ddi.12972.
11. Yang X, Bauhus J, Both S, et al. Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). European Journal of Forest Re-search 2013; 132: 593–606. doi: 10.1007/s10342-013-0696-z.
12. Dı́az S, Cabido M. Vive la différence: Plant func-tional diversity matters to ecosystem processes. Trends in Ecology & Evolution 2001; 16(11): 646–655. doi: 10.1016/S0169-5347(01)02283-2.
13. Anacker BL, Klironomos JN, Maherali H, et al. Phylogenetic conservatism in plant‐soil feedback and its implications for plant abundance. Ecology Letters 2014; 17(12): 1613–1621. doi: 10.1111/ele.12378.
14. Gougherty AV, Davies TJ. Towards a phylogenet-ic ecology of plant pests and pathogens. Philo-sophical Transactions of the Royal Society B 2021; 376: 20200359. doi: 10.1098/rstb.2020.0359.
15. Cadotte MW, Carscadden K, Mirotchnick N. Be-yond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 2011; 48(5): 1079–1087. doi: 10.1111/j.1365-2664.2011.02048.x.
16. Ampoorter E, Barbaro L, Jactel H, et al. Tree di-versity is key for promoting the diversity and abundance of forest‐associated taxa in Europe. Oikos 2020; 129(2): 133–146. doi: 10.1111/oik.06290.
17. Martin FM, Uroz S, Barker DG. Ancestral allianc-es: Plant mutualistic symbioses with fungi and bacteria. Science 2017; 356(6340): eaad4501. doi: 10.1126/science.aad4501.
18. Bahram M, Netherway T, Hildebrand F, et al. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytolo-gist 2020; 227(4): 1189–1199. doi: 10.1111/nph.16598.
19. Read DJ. Mycorrhizas in ecosystems. Experientia 1991; 47: 376–391. doi: 10.1007/BF01972080.
20. Phillips RP, Brzostek E, Midgley MG. The mycor-rhizal-associated nutrient economy: A new framework for predicting carbon-nutrient cou-plings in temperate forests. New Phytologist 2013; 199(1): 41–51. doi: 10.1111/nph.12221.
21. Tedersoo L, Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews 2019; 94: 1857–1880. doi: 10.1111/brv.12538.
22. Grossman JJ, Vanhellemont M, Barsoum N, et al. Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. En-vironmental and Experimental Botany 2018; 152: 68–89. doi: 10.1016/j.envexpbot.2017.12.015.
23. Morales-Rodríguez C, Anslan S, Auger-Rozenberg MA, et al. Forewarned is forearmed: Harmonized approaches for early detection of potentially invasive pests and pathogens in senti-nel plantings. NeoBiota 2019; 47: 95–123. doi: 10.3897/neobiota.47.34276.
24. Li XC, Qian X, Gao C, et al. Plant identity strong-ly structures the root-associated fungal communi-ty in a diverse subtropical forest. Basic and Ap-plied Ecology 2021; 55: 98–109. doi: 10.1016/j.baae.2021.01.002.
25. Tedersoo L, Mikryukov V, Anslan S, et al. The global soil mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversi-ty 2021; 111: 573–588. doi: 10.1007/s13225-021-00493-7.
26. Zanne AE, Tank DC, Cornwell WK, et al. Three keys to the radiation of angiosperms into freezing environments. Nature 2014; 506: 89–92. doi: 10.1038/nature12872.
27. Orme D. The caper package: Comparative analy-sis of phylogenetics and evolution in R [Internet]. 2023 [cited 2023 Dec 20]. Available from: https://cran.irsn.fr/web/packages/caper/vignettes/caper.pdf.
28. Griffin EA, Harrison JG, McCormick MK, et al. Tree diversity reduces fungal endophyte richness and diversity in a large-scale temperate forest ex-periment. Diversity 2019; 11(12): 234. doi: 10.3390/d11120234.
29. Bruelheide H, Nadrowski K, Assmann T, et al. Designing forest biodiversity experiments: Gen-eral considerations. illustrated by a new large ex-periment in subtropical China. Methods in Ecolo-gy and Evolution 2014; 5(1): 74–98. doi: 10.1111/2041-210X.12126.
30. Teste FP, Kardol P, Turner BL, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 2017; 355(6321): 173–176. doi: 10.1126/science.aai8291.
31. Tedersoo L, Brundrett MC. Evolution of ectomy-corrhizal symbiosis in plants. In: Tedersoo L (edi-tor). Ecological studies. Cham: Springer Cham; 2017. p. 407–467. doi: 10.1007/978-3-319-56363-3_19.
32. Koele N, Dickie IA, Oleksyn J, et al. No globally consistent effect of ectomycorrhizal status on fo-liar traits. New Phytologist 2012; 196(3): 845–852. doi: 10.1111/j.1469-8137.2012.04297.x.
33. Van de Peer T, Mereu S, Verheyen K, et al. Tree seedling vitality improves with functional diversi-ty in a Mediterranean common garden experi-ment. Forest Ecology and Management 2018; 409: 614–633. doi: 10.1016/j.foreco.2017.12.001.
34. Ferlian O, Cesarz S, Craven D, et al. Mycorrhiza in tree diversity-ecosystem function relationships: Conceptual framework and experimental imple-mentation. Ecosphere 2018; 9(5): e02226. doi: 10.1002/ecs2.2226.
35. Heklau H, Schindler N, Buscot F, et al. Mixing tree species associated with arbuscular or ecto-trophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecology Evolution 2021; 11(10): 5424–5440. doi: 10.1002/ece3.7437.
36. Singavarapu B, Beugnon R, Bruelheide H, et al. Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Micro-biology 2022; 24(9): 4236–4255. doi: 10.1111/1462-2920.15690.
37. Ferlian O, Lintzel EM, Bruelheide H, et al. Nutri-ent status not secondary metabolites drives her-bivory and pathogen infestation across different-ly mycorrhizal tree monocultures and mixtures. Basic and Applied Ecology 2021; 55: 110–123. doi: 10.1016/j.baae.2020.09.009.
38. Weissbecker C, Heintz-Buschart A, Bruelheide H, et al. Linking soil fungal generality to tree richness in young subtropical Chinese forests. Microorgan-isms 2019; 7(11): 547. doi: 10.3390/microorganisms7110547.
39. Vehviläinen H, Koricheva J. Moose and vole browsing patterns in experimentally assembled pure and mixed forest stands. Ecography 2006; 29(4): 497–506. doi: 10.1111/j.0906-7590.2006.04457.x.
40. Verheyen K, Vanhellemont M, Auge H, et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 2016; 45: 29–41. doi: 10.1007/s13280-015-0685-1.
DOI: https://doi.org/10.24294/sf.v6i1.2510
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Leho Tedersoo, Kaire Loit, Ahto Agan, Saleh Rahimlou, Annaliisa Vask, Manikandan Ariyan, Rein Drenkhan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.