Bark stripping insects (coleoptera: curculionidae) and climate change: Current issues and prospects in temperate forests

Ek del-Val, Cuauhtémoc Sáenz-Romero

Article ID: 1593
Vol 3, Issue 2, 2020

(Abstract)

Abstract


Important modifications are occurring in temperate forests due to climate change; in polar latitudes their distribution area is increasing, while in tropical latitudes it is decreasing due to temperature increase and droughts. One of the biotic regulators of temperate forests are the debarking insects that cause the mortality of certain trees. These insects have increased in number, favored by climate change, and the consequences on forests have not been long in coming. In recent times in the northern hemisphere, the massive mortality of conifers due to the negative synergy between climate change and debarking insects has been evident. In Mexico, we have also experienced infestations by bark stripping insects never seen before; therefore, we are trying to understand the interactions between climate change, forest health and bark stripping insects, to detect the areas with greater susceptibility to attack by these insects and propose management measures to reduce the effects.


Keywords


Coniferous Forests; Climate Change; Drought; Scolytinae

Full Text:

PDF


References


1. Challenger A, Soberón J. Los ecosistemas terrestres (Spanish) [Terrestrial ecosystems]. In: Conabio (editor). Capital natural de México, Conocimiento actual de la biodiversidad. vol. 1. México: CONABIO; 2008. p. 87–108.

2. Sánchez-González A. Una visión actual de la diversidad y distribución de los pinos de México (Spanish) [A current vision of the diversity and distribution of the pines of Mexico]. Madera y Bosques 2008; 14: 107120.

3. Rzedowski J. Vegetación de México (Spanish) [Vegetation of Mexico]. México, D.F.: Limusa; 1978.

4. SEMARNAT. Anuario estadístico de la producción forestal 2014 (Spanish) [Statistical yearbook of forest production 2014]. México, D.F.: SEMARNAT. 2015.

5. Berrueta Soriano VM. Evaluación energética del desempeño de dispositivos para la cocción con leña (Spanish) [Energy evaluation of the performance of devices for cooking with wood]. México, D.F.: UNAM; 2007.

6. CONABIO. Capital Natural de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Spanish) [Natural Capital of Mexico. National Commission for the Knowledge and Use of Biodiversity]. 2009.

7. Bray DB, Merino PL, Barry D. Los bosques comunitarios de México: Manejo sustentable de paisajes forestales (Spanish) [The community forests of Mexico: Sustainable management of forest landscapes]. Mexico, D.F.: Instituto Nacional de Ecología; 2007.

8. Pausas JG, Keeley JE. A burning story: The role of fire in the history of life. Bio-Science 2009; 59: 593601. doi: 10.1525/bio.2009.59.7.10.

9. Rodríguez-Trejo DA. Fire regimes, fire ecology, and fire management in Mexico. AMBIO: A Journal of the Human Environment 2008; 37: 548556. doi: 10.1579/0044-7447-37.7.548.

10. Pérez-Salicrup DR, Cantú-Fernández M, Jaramillo-López PF, et al. Restauración de un proceso: El fuego en la Reserva de la Biosfera Mariposa Monarca en los estados de México y Michoacán (Spanish) [Restoration of a process: The fire in the Monarch Butterfly Biosphere Reserve in the states of Mexico and Michoacán]. Experiencias mexicanas en la restauración de los ecosistemas. Cuernavaca, Morelos, Mexico: UNAM, CRIM-UEAM, CONABIO; 2016.

11. Farrel BD, Squeira AS, O’Meara BC, et al. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 2001; 55: 20112027. doi: 10.1111/j.0014-3820.2001.tb01318.x.

12. Wood SL. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Natural Memories 1982; 6: 11359.

13. Billings RF, Clarke RS, Espino Mendoza V, et al. Bark beetle outbreaks and fire: A devastating combination for Central America’s pine forests. Unasylva 2004; 55: 1521.

14. Bentz BJ, Régnière J, Fettig CJ, et al. Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. Bio-Science 2010; 60: 602613. doi: 10.1525/bio.2010.60.8.6.

15. Atkinson TH. Estado de conocimiento de la taxonomía de los escarabajos descortezadores y ambrosiales de México (Coleoptera: Curculionidae: Scolytinae) (Spanish) [State of knowledge of the taxonomy of bark and ambrosial beetles from Mexico (Coleoptera: Curculionidae: Scolytinae)]. XVI Simposio de Parasitología Forestal. Mexico: Comisión Nacional Forestal; 2013. p. 1327.

16. Christiansen E, Bakke A. The spruce bark beetle of Eurasia. In: Berryman AA (editor). Dynamics of forest insect populations: Patterns, causes, implications. Plenum, New York: Springer; 1988. p. 479503.

17. Cibrián-Tovar D, Méndez JT, Campos R, et al. Insectos Forestales de México/Forest Insects of México. Chapingo, Mexico: Universidad Autónoma Chapingo. SARH. USDA. Natural Resources Canada. Comisión Forestal de América del Norte. FAO; 1995.

18. Salinas-Moreno Y, Mendoza MG, Barrios MA, et al. Areography of the genus Dendroctonus (Coleoptera: Curculionidae: Scolytinae) in Mexico. Journal of Biogeography 2004; 31: 11631177. doi: 10.1111/j.1365-2699.2004.01110.x.

19. Fonseca GJ, de los Santos-Posadas H, Llanderal CC, et al. Ips e insectos barrenadores en árboles de Pinus montezumae dañados por incendios (Spanish) [Ips and borers in Pinus montezumae trees damaged by fires]. Madera y Bosques 2008; 14: 6980.

20. World Metereological Organization. The global climate 20012010: A decade of climate extremes—Summary report. World Metereological Organization, Génova, Suiza; 2013.

21. Sáenz-Romero C, Rehfeldt GE, Crookston NL, et al. Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change 2010; 102: 595623. doi: 10.1007/s10584-009-9753-5.

22. Pavia EG, Graef F, Reyes J. Annual and seasonal surface air temperature trends in Mexico. International Journal of Climatology 2009; 29: 13241329. doi: 10.1002/joc.1787.

23. Walther GR, Post E, Convey P, et al. Ecological responses to recent climate change. Nature 2002; 416: 389–395. doi: 10.1038/416389.

24. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003; 421: 37–42.

25. Archer S, Schimel DS, Holland EA. Mechanisms of shrubland expansion: Land use, climate or CO2? Climatic Change 1995; 29: 9199.

26. doi: 10.1007/BF01091640.

27. Grace J, Beringer F, Nagy L. Impacts of climate change on the tree line. Annals of Botany 2002; 90: 537544. doi: 10.1093/aob/mcf222.

28. Lenoir J, Gégout JC, Marquet P, et al. A significant upward shift in plant species optimum elevation during the 20th Century. Science 2008; 320(5884): 1768–1771. doi: 10.1126/science.1156831.

29. Parmesan C, Ryholm N, Stefanescu C, et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999; 399: 579583. doi: 10.1038/21181.

30. Wilson RJ, Gutiérrez D, Gutiérrez J, et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters 2005; 8: 11381146. doi: 10.1111/j.1461-0248.2005.00824.x.

31. González P, Neilson RP, Lenihan JM. et al. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography 2010; 19(6): 755–768. doi: 10.1111/j.1466-8238.2010.00558.x.

32. Smith TM, Leemans R, Shugart HH. Sensitivity of terrestrial carbon storage to CO2-induced climate change-comparison of 4 scenarios based on general-circulation models. Climatic Change 1992; 21: 367384. DOI: 10.1007/BF00141377

33. Brolsma RJ. Effect of climate change on temperate forest ecosystems [PhD thesis]. Utrecht: Utrecht University; 2010.

34. Reich RM, Lundquist JE, Hughes K. Host-environment mismatches associated with subalpine fir decline in Colorado. Journal of Forestry Research 2016; 27: 11771189. doi: 10.1007/s11676-016-0234-1.

35. Rehfeldt GE, Crookston NL, Sáenz-Romero C, et al. North American vegetation model for land use planning in a changing climate: A statistical solution to large classification problems. Ecological Applications 2012; 22:119-141. doi: 10.1007/s10584-009-9753-5.

36. Allen CD, Macalady AK, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 2010; 259: 660684. doi: 10.1016/j.foreco.2009.09.001.

37. Mátyás C. Forecasts needed for retreating forests. Nature 2010; 469: 1271. doi: 10.1038/4641271a.

38. Worral JJ, Rehfeldt GE, Hamann A, et al. Recent declines of Populus tremuloides in North America linked to climate. Forest Ecology and Management 2013; 299: 35–51. doi: 10.1016/j.foreco.2012.12.033.

39. Allen CD, Breshears DD, McDowell N. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015; 6: 154. doi: 10.1890/ES15-00203.1.

40. Bentz BJ, Logan JA, Amman GD. Temperaturedependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. The Canadian Entomologist 1991; 123: 10831094.

41. Safranyik L, Linton DA. Mortality of mountain pine beetle larvae, Dendroctonus ponderosae (Coleoptera: Scolytidae) in logs of lodgepole pine (Pinus contorta var. latifolia) at constant low temperatures. Journal of the Entomological Society of British Columbia 1998; 95: 8187.

42. Raffa KF, Aukema BH, Bentz BJ, et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bio-Science 2008; 58: 501–517.

43. doi: 10.1641/B580607.

44. Ungerer MJ, Ayres MP, Lombardero MJ. Climate and the northern distribution limits of Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). Journal of Biogeography 1999; 26: 11331145.

45. doi: 10.1046/j.1365-2699.1999.00363.x.

46. Safranyik L, Carroll AL, Regniere J, et al. Potential for range expansion of mountain pine beetle into the boreal forest of North America. Canadian Entomologist 2010; 142: 415442.

47. doi: 10.4039/n08-CPA01.

48. Negrón JF, McMillin JD, Anhold JA, et al. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. Forest Ecology and Management 2009; 257: 13531362. doi: 10.1016/j.foreco.2008.12.002.

49. Negrón JF, Popp JB. Probability of ponderosa pine infestation by mountains pine beetle in the Colorado Front Range. Forest Ecology and Management 2004; 191: 1727. doi: 10.1016/j.foreco.2003.10.026.

50. Schutt P, Cowling EB. Waldsterben, a general decline of forests in central Europe: Symptoms, development, and possible causes. Plant Disease 1985; 69: 548558.

51. Logan JA, Régnière J, Powell JA. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment 2003; 1: 130–137. doi: 10.1890/1540-9295.

52. Anderegg WRL, Hicke JA, Fisher RA, et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 2015; 208: 674–683. doi: 10.1111/nph.13477.

53. Gaylord ML, Kolb TE, McDowell N. Mechanisms of piñon pine mortality after severe drought: A retrospective study of mature trees. Tree Physiology 2015; 35: 806816. doi: 10.1093/treephys/tpv038.

54. Safranyik L, Linton DA. Mortality of mountain pine beetle larvae, Dendroctonus ponderosae (Coleoptera: Scolytidae) in logs of lodgepole pine (Pinus contorta var. latifolia) at constant low temperatures. Journal of the Entomological Society of British Columbia 1998; 95: 81–87.

55. Faccoli M. Winter mortality in sub-corticolous populations of Ips typographus (Coleoptera, Scolytidae) and its parasitoird in the south-eastern Alps. Journal of Pest Science 2002; 75: 6268. doi: 10.1034/j.1399-5448.2002.02017.x.

56. Cudmore TJ, Björklund N, Carroll AL, et al. Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in native host tree populations. Journal of Applied Ecology 2010; 47: 10361043. doi: 10.1111/j.1365-2664.2010.01848.x.

57. Kurz WA, Dymond CC, Stinson G, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 2003; 452: 987–990.

58. doi: 10.1038/nature06777.

59. Jones ME, Paine TD, Fenn ME, et al. Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions. Forest Ecology and Management 2004; 200: 6776.

60. doi: 10.1016/j.foreco.2004.06.003.

61. Návar J. Hydro-climatic variability and perturbations in Mexico’s north-western temperate forests. Ecohydrology 2015; 8: 1065–1072.

62. doi: 10.1002/eco.1564.

63. Salinas-Moreno Y, Ager A, Vargas CF, et al. Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Forest Ecology and Management 2010; 260: 5261. doi: 10.1016/j.foreco.2010.03.029.

64. Manzo-Delgado L, López-García J, Alcántara-Ayala I. Role of forest conservation in lessening land degradation in a temperate region: The Monarch Butterfly Biosphere Reserve, Mexico. Journal of Environmental Management 2013; 138: 5566. doi: 10.1016/j.jenvman.2013.11.017.

65. Rubín-Aguirre A, Sáenz-Romero C, Lindig-Cisneros R, et al. Bark beetle pests in an altitudinal gradient of a Mexican managed forest. Forest Ecology and Management 2015; 343: 7379. doi: 10.1016/j.foreco.2015.01.028.

66. Reeve JD. Predation and bark beetle dynamics. Oecologia 1997; 112: 4854. doi: 10.1007/s004420050282.

67. Ryall KL, Fahrig L. Habitat loss decreases predator-prey ratios in a pine-bark beetle system. Oikos 2005; 110: 265270. doi: 10.1111/j.0030-1299.2005.13691.x.

68. Winter MB, Baier R, Ammer C. Regeneration dynamics and resilience of unmanaged mountain forests in the Northern Limestone Alps following bark beetle-induced spruce dieback. European Journal of Forest Research 2015; 134: 949–968. doi: 10.1007/s10342-015-0901-3.

69. Dhar A, Parrott L, Hawkins CDB. Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 2016; 7: 119. doi: 10.3390/f7080171.




DOI: https://doi.org/10.24294/sf.v3i2.1593

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Ek del-Val, Cuauhtémoc Sáenz-Romero

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.