Land Use Change Detection and Prediction Using Markov-CA and Publishing on the Web with Platform Map Server, Case Study: Qom Metropolis, Iran

Mojtaba Pirnazar, Nasrin Haghighi, Donya Azhand, Dr. Kaveh Ostad-Ali-Askari, Professor Saeid Eslamian, Professor Nicolas R. Dalezios, Professor Vijay P. Singh

Abstract


To achieve sustainable development, detailed planning, control and management of land cover changes that occurs naturally or by human caused artificial factors, is essential. Urban managers and planners need a tool that represents them the information accurate, fast and in exact time. In this study, land use changes of 3 periods 1994-2002, 2002-2009, 2009-2015 and predictions of 2009, 2015 and 2023 were assessed. In this paper, Maximum Likelihood method was used to classify the images, so that after evaluation of accuracy, amount of overall accuracy for images of 2013 was 85.55 % and its Kappa coefficient was 80.03%. To predict land use changes, Markov-CA model was used that after assessing the accuracy, the amount of overall accuracy for 2009 was 82.57% and for 2015 was 93.865%. ThenWebGis application was designed via map server application and evoked shape files through map file and open layers to browser environment and for design of appearance of website Css, HTML and JavaScript languages were used. HTML is responsible for creating the foundation and overall structure of webpage but beautify and layout design is on Css.


Full Text:

PDF

References


Adam, Frederic, & Humphreys, Patrick. (2008). Encyclopedia of decision making and decision support technologies. New York: Hershey Publication.

Araya, Yikalo H., & Cabral, Pedro. (2010). Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549.

Coulter, Lloyd L., Stow, Douglas A., Tsai, Yu-Hsin, Ibanez, Nicholas, Shih, Hsiao-chien, Kerr, Andrew, . . . Mensah, Foster. (2016). Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. Remote Sensing of Environment, 184, 396-409. doi: 10.1016/j.rse.2016.07.016

Estoque, Ronald C., & Murayama, Yuji. (2015). Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecological Indicators, 56, 205-217. doi: 10.1016/j.ecolind.2015.03.037

Gong, Wenfeng, Yuan, Li, Fan, Wenyi, & Stott, Philip. (2015). Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata—Markov modelling. International Journal of Applied Earth Observation and Geoinformation, 34, 207-216. doi: 10.1016/j.jag.2014.07.005

Jhonnerie, Romie, Siregar, Vincentius P., Nababan, Bisman, Prasetyo, Lilik Budi, & Wouthuyzen, Sam. (2015). Random Forest Classification for Mangrove Land Cover Mapping Using Landsat 5 TM and Alos Palsar Imageries. Procedia Environmental Sciences, 24, 215-221. doi: 10.1016/j.proenv.2015.03.028

Jia, Yangwen, Zhao, Hongli, Niu, Cunwen, Jiang, Yunzhong, Gan, Hong, Xing, Zhi, . . . Zhao, Zhixin. (2009). A WebGIS-based system for rainfall-runoff prediction and real-time water resources assessment for Beijing. Computers & Geosciences, 35(7), 1517-1528. doi: 10.1016/j.cageo.2008.10.004

Jokar Arsanjani, Jamal, Helbich, Marco, Kainz, Wolfgang, & Darvishi Boloorani, Ali. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275. doi: 10.1016/j.jag.2011.12.014

Keith, Clarke, Stacy, Hoppen, & J, Gaydos. L. (1997). A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area. Environment and Planning, 24, 247–261

Le, Quang Bao, Park, Soo Jin, Vlek, Paul L. G., & Cremers, Armin B. (2008). Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system. I. Structure and theoretical specification. Ecological Informatics, 3(2), 135-153. doi: 10.1016/j.ecoinf.2008.04.003

Li, Xia, & Yeh, Anthony Gar-On. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4), 323-343. doi: 10.1080/13658810210137004

Liu, Huiping, & Zhou, Qiming. (2005). Developing urban growth predictions from spatial indicators based on multi-temporal images. Computers, Environment and Urban Systems, 29(5), 580-594. doi: 10.1016/j.compenvurbsys.2005.01.004

Mei, Alessandro, Manzo, Ciro, Fontinovo, Giuliano, Bassani, Cristiana, Allegrini, Alessia, & Petracchini, Francesco. (2016). Assessment of land cover changes in Lampedusa Island (Italy) using Landsat TM and OLI data. Journal of African Earth Sciences, 122, 15-24. doi: 10.1016/j.jafrearsci.2015.05.014

Myint, Soe W., & Wang, Le. (2006). Multicriteria decision approach for land use land cover change using Markov chain analysis and a cellular automata approach. Canadian Journal of Remote Sensing, 32(6), 390-404. doi: 10.5589/m06-032

Pilehforooshha, Parastoo, Karimi, Mohammad, & Taleai, Mohammad. (2014). A GIS-based agricultural land-use allocation model coupling increase and decrease in land demand. Agricultural Systems, 130, 116-125. doi: 10.1016/j.agsy.2014.07.001

Rindfuss, R. R., Walsh, S. J., Turner, B. L., 2nd, Fox, J., & Mishra, V. (2004). Developing a science of land change: challenges and methodological issues. Proc Natl Acad Sci U S A, 101(39), 13976-13981. doi: 10.1073/pnas.0401545101

Sang, Lingling, Zhang, Chao, Yang, Jianyu, Zhu, Dehai, & Yun, Wenju. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3–4), 938-943. doi: http://dx.doi.org/10.1016/j.mcm.2010.11.019

Stokey, E, & Zeckhauser, R. (1978). A primer for policy analysis: W.W. Norton.

Tan, Minghong, Li, Xiubin, Xie, Hui, & Lu, Changhe. (2005). Urban land expansion and arable land loss in China—a case study of Beijing–Tianjin–Hebei region. Land Use Policy, 22(3), 187-196. doi: 10.1016/j.landusepol.2004.03.003

Tv, Ramachandra, Aithal, Bharath H., & Sanna, Durgappa D. (2012). Insights to urban dynamics through landscape spatial pattern analysis. International Journal of Applied Earth Observation and Geoinformation, 18, 329-343. doi: 10.1016/j.jag.2012.03.005

Valbuena, Diego, Verburg, Peter H., & Bregt, Arnold K. (2008). A method to define a typology for agent-based analysis in regional land-use research. Agriculture, Ecosystems & Environment, 128(1-2), 27-36. doi: 10.1016/j.agee.2008.04.015

Vaz, Eric de Noronha, Nijkamp, Peter, Painho, Marco, & Caetano, Mário. (2012). A multi-scenario forecast of urban change: A study on urban growth in the Algarve. Landscape and Urban Planning, 104(2), 201-211. doi: 10.1016/j.landurbplan.2011.10.007

Weber, C., & Puissant, A. (2003). Urbanization pressure and modeling of urban growth: example of the Tunis Metropolitan Area. Remote Sensing of Environment, 86(3), 341-352. doi: 10.1016/s0034-4257(03)00077-4

Yang, Xin, Zheng, Xin-Qi, & Lv, Li-Na. (2012). A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling, 233, 11-19. doi: 10.1016/j.ecolmodel.2012.03.011




DOI: http://dx.doi.org/10.24294/jgc.v2i1.453

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.