Enhanced statistical approach for urban groundwater flooding risk assessment
Vol 8, Issue 2, 2025
Abstract
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
Keywords
Full Text:
PDFReferences
1. Hughes AG, Vounaki T, Peach DW, et al. Flood risk from groundwater: examples from a Chalk catchment in southern England. Journal of Flood Risk Management. 2011; 4(3): 143-155. doi: 10.1111/j.1753-318x.2011.01095.x
2. Abboud JM, Ryan MC, Osborn GD. Groundwater flooding in a river‐connected alluvial aquifer. Journal of Flood Risk Management. 2018; 11(4). doi: 10.1111/jfr3.12334
3. Macdonald D, Dixon A, Newell A, et al. Groundwater flooding within an urbanised flood plain. Journal of Flood Risk Management. 2011; 5(1): 68-80. doi: 10.1111/j.1753-318x.2011.01127.x
4. Al-Sefry SA, Şen Z. Groundwater Rise Problem and Risk Evaluation in Major Cities of Arid Lands – Jedddah Case in Kingdom of Saudi Arabia. Water Resources Management. 2006; 20(1): 91-108. doi: 10.1007/s11269-006-4636-2
5. Mancini CP, Lollai S, Volpi E, et al. Flood Modeling and Groundwater Flooding in Urbanized Reclamation Areas: The Case of Rome (Italy). Water. 2020; 12(7): 2030. doi: 10.3390/w12072030
6. Kreibich H, Thieken AH. Assessment of damage caused by high groundwater inundation. Water Resources Research. 2008; 44(9). doi: 10.1029/2007wr006621
7. Mohammadzadeh H, Dadgar MA, Nassery H. Prediction of the effect of water supplying from Shirindare dam on the Bojnourd aquifer using MODFLOW2000. Water Resources. 2017; 44(2): 216-225. doi: 10.1134/s009780781702004x
8. Gotkowitz MB, Attig JW, McDermott T. Groundwater flood of a river terrace in southwest Wisconsin, USA (Portuguese). Hydrogeology Journal. 2014; 22(6): 1421-1432. doi: 10.1007/s10040-014-1129-x
9. Jerome Morrissey P, McCormack T, Naughton O, et al. Modelling groundwater flooding in a lowland karst catchment. Journal of Hydrology. 2020; 580: 124361. doi: 10.1016/j.jhydrol.2019.124361
10. European Union Directive. Directive 2004/18/EC of the European Parliament and of the council on the assessment and management of flood risks. Official Journal of the European Union; 2007.
11. Sommer T, Karpf C, Ettrich N, et al. Coupled modelling of subsurface water flux for an integrated flood risk management. Natural Hazards and Earth System Sciences. 2009; 9(4): 1277-1290. doi: 10.5194/nhess-9-1277-2009
12. Fürst J, Bichler A, Konecny F. Regional Frequency Analysis of Extreme Groundwater Levels. Groundwater. 2014; 53(3): 414-423. doi: 10.1111/gwat.12223
13. Habel S, Fletcher CH, Rotzoll K, et al. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Research. 2017; 114: 122-134. doi: 10.1016/j.watres.2017.02.035
14. Colombo L, Gattinoni P, Scesi L. Stochastic modelling of groundwater flow for hazard assessment along the underground infrastructures in Milan (northern Italy). Tunnelling and Underground Space Technology. 2018; 79: 110-120. doi: 10.1016/j.tust.2018.05.007
15. Allocca V, Di Napoli M, Coda S, et al. A novel methodology for Groundwater Flooding Susceptibility assessment through Machine Learning techniques in a mixed-land use aquifer. Science of The Total Environment. 2021; 790: 148067. doi: 10.1016/j.scitotenv.2021.148067
16. Naughton O, Johnston PM, McCormack T, et al. Groundwater flood risk mapping and management: examples from a lowland karst catchment in Ireland. Journal of Flood Risk Management. 2015; 10(1): 53-64. doi: 10.1111/jfr3.12145
17. Coda S, Tufano R, Calcaterra D, et al. Groundwater flooding hazard assessment in a semi-urban aquifer through probability modelling of surrogate data. Journal of Hydrology. 2023; 621: 129659. doi: 10.1016/j.jhydrol.2023.129659
18. Ehya F, Marbouti Z. Hydrochemistry and contamination of groundwater resources in the Behbahan plain, SW Iran. Environmental Earth Sciences. 2016; 75(6). doi: 10.1007/s12665-016-5320-3
19. Croneborg L, Saito K, Matera M, et al. Digital Elevation Models. World Bank, Washington, DC; 2020.
20. Altafi Dadgar M, Nakhaei M, Porhemmat J, et al. Transient potential groundwater recharge under surface irrigation in semiarid environment: An experimental and numerical study. Hydrological Processes. 2018; 32(25): 3771-3783. doi: 10.1002/hyp.13287
21. Dadgar MA, Nakhaei M, Porhemmat J, et al. Potential groundwater recharge from deep drainage of irrigation water. Science of The Total Environment. 2020; 716: 137105. doi: 10.1016/j.scitotenv.2020.137105
22. Nguyen HH, Peche A, Venohr M. Modelling of sewer exfiltration to groundwater in urban wastewater systems: A critical review. Journal of Hydrology. 2021; 596: 126130. doi: 10.1016/j.jhydrol.2021.126130
23. Das MM, Das Saikia M. Hydrology. Prentice-Hall Of India Pvt. Limited; 2009.
24. Chebanov O, Zadniprovska. Zoning groundwater flooding risks in the cities and urban agglomeration areas of Ukraine. In: Proceedings of the International Union of Geodesy and Geophysics; 2011.
25. Cunnane C. Statistical Distributions for Flood Frequency Analysis. Secretariat of the World Meteorological Organization; 1989.
26. Guerriero L, Ruzza G, Guadagno FM, et al. Flood hazard mapping incorporating multiple probability models. Journal of Hydrology. 2020; 587: 125020. doi: 10.1016/j.jhydrol.2020.125020
27. Hansen A. The Three Extreme Value Distributions: An Introductory Review. Frontiers in Physics. 2020; 8. doi: 10.3389/fphy.2020.604053
28. Solaiman TA. Uncertainty estimation of extreme precipitations under climate change: A non-parametric approach [PhD thesis]. The University of Western Ontario; 2011.
29. Sozer B, Kocaman S, Nefeslioglu HA, et al. Preliminary investigations on flood susceptibility mapping in ankara (turkey) using modified analytical hierarchy process (M-AHP). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2018; XLII-5: 361-365. doi: 10.5194/isprs-archives-xlii-5-361-2018
30. Elassal M. Geomorphological of hazard maps in ABAH Urban, KSA. Bulletin de la Société de Géographie d’Egypte. 2019; 92(1): 53-75. doi: 10.21608/bsge.2019.90374
31. Darabi H, Choubin B, Rahmati O, et al. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology. 2019; 569: 142-154. doi: 10.1016/j.jhydrol.2018.12.002
32. Rafiei-Sardooi E, Azareh A, Choubin B, et al. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. International Journal of Disaster Risk Reduction. 2021; 66: 102614. doi: 10.1016/j.ijdrr.2021.102614
33. Taromideh F, Fazloula R, Choubin B, et al. Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning. Sustainability. 2022; 14(8): 4483. doi: 10.3390/su14084483
34. Gaitan S, ten Veldhuis M claire, van de Giesen N. Spatial Distribution of Flood Incidents Along Urban Overland Flow-Paths. Water Resources Management. 2015; 29(9): 3387-3399. doi: 10.1007/s11269-015-1006-y
35. Rincón D, Khan UT, Armenakis C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences. 2018; 8(8): 275. doi: 10.3390/geosciences8080275
DOI: https://doi.org/10.24294/jgc11495
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.