Techniques and methods of seismic data processing in active volcanic areas: some applications to multichannel seismic profiles (Gulf of Naples, Southern Tyrrhenian sea, Italy)

Aiello Gemma


The techniques of seismic surveying, especially reflection seismic, considerably varied during last year’s. The contribution to this variation mainly came from the oil industry, which has developed the geophysical methods for oil searching. The basic techniques of seismic exploration consist of the generation of seismic waves artificially in the ground (source) and of the measurement of the requested times to cover the source-receiver path. Seismic data processing of three multichannel seismic profiles located in the Gulf of Naples for an overall length of 150 kilometers is herein presented. The techniques of seismic processing used for the elaboration of the seismic data are up-to-date. Some of them are based on complex mathematical models, allowing obtaining good velocity analysis for the production of stacked sections, ready to be interpreted. In this paper the procedures of processing of multichannel seismic data starting from the field data are shown. Sketch diagrams of the elaboration processes applied during several phases of the whole processing have been constructed. The used software are the Promax2D (Landmark Ltd.) and the Seismic Unix (Colorado School of Mines). The steps of the seismic data processes included the pre-processing, the sorting, the velocity analysis, the normal move-out (NMO), the stacking, the band-pass filtering, the multiple removals, the predictive de-convolution and the spiking de-convolution.


Seismic data processing; multichannel seismic profiles; Gulf of Naples; Southern Tyrrhenian sea.

Full Text:



Aiello G., Marsella E., Cicchella A. G., Di Fiore V. (2011a) New insights on morphostructures and seismic stratigraphy along the Campania continental margin (Southern Italy) based on deep multichannel seismic profiles. Rendiconti Lincei, 22 (4), 349-373.

Aiello G. Cicchella A. G., Di Fiore V., Marsella E. (2011b) New seismo-stratigraphic data of the Volturno Basin (northern Campania, Tyrrhenian margin, southern Italy): implications for tectonostratigraphy of the Campania and Latium sedimentary basins. Annals of Geophysics, 54 (3), 265-283.

Auger E., Gasparini P., Virieux J., Zollo A. (2001) Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science, 294, 1510-1512.

Antonioli F., Bard E., Potter E.K., Silenzi S., Improta S. (2004) 215-ka history of sea-level oscillations from marine and continental layers in Argentarola cave speleothems (Italy). Global and Planetary Change, 43, 57-78.

Bellucci F., Milia A., Rolandi G., Torrente M.M. (2006) Structural control on the Upper Pleistocene ignimbrite eruptions in the Neapolitan area (Italy): Volcanotectonic faults versus caldera faults. In B. De Vivo (Ed.), Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in Volcanology, 9, 163–180, Springer.

Benz H.M., Chouet B., Dawson P.B., Lahr J.C., Page R.A., Hole J.A. (1996) Three-dimensional P and S wave velocity structure of Redoubt volcano, Alaska. Journal of Geophysical Research, 101, 8111-8182.

Bertrand E., Deschamps A., Virieux J. (2000) Crustal structure deduced from receiver functions via single-scattering migration. In: Capuano P., Gasparini P., Zollo A., Virieux J., Casale R., Yeroyanni M. (Eds.) The Internal Structure of Mt. Vesuvius, pp. 117-144.

Bracewell R.N. (1965) The Fourier Transform and its application. McGraw-Hill Book Co.

Bruno P.P.G., Di Fiore V., Rapolla A. (2002) Seismic reflection data processing in active volcanic areas: an application to Campi Flegrei and Somma Vesuvius offshore (Southern Italy). Annals of Geophysics, 45 (6), 753-768.

Bruno P.P.G., Rapolla A., Di Fiore V. (2003)Structural setting of the Bay of Naples (Italy) seismic reflection data: implications for Campanian volcanism. Tectonophysics, 372, 193-213.

Bruno P.P.G., Berardinelli S., Maraio S. (2018) Multivariate interpretation of co-located geophysical experiments at Solfatara Volcano (Campi Flegrei, Italy) using Exploratory Data Analysis techniques. Miscellanea INGV, Int. Cong. “Cities on Volcanoes”, Naples, September 2018, p. 85.

De Franco R., Tondi R., Caielli G., Biella G., Corsi A. (2000) 2D seismic modelling and 2D seismo-gravity sequential integrated inversion along TomoVes profiles. In: Capuano P., Gasparini P., Zollo A., Virieux J., Casale R., Yeroyanni M. (Eds.) The Internal Structure of Mt. Vesuvius, pp. 105-116.

De Matteis R., Latorre D., Zollo A., Virieux J. (2000) 1-D P-velocity Models of Mt. Vesuvius volcano from the inversion of TomoVes96 First Arrival Time Data. Pure and Applied Geophysics, 157, 1643-1661.

De Natale G., Troise C., Mark D., Mormone A., Piochi M., Di Vito M.A., Isaia R., Carlino S., Barra D., Somma R. (2016) The Campi Flegrei Deep Drilling Project (CFDDP): New insight on caldera structure, evolution and hazard implications for the Naples area. Geochemistry, Geophysics, Geosystems, 17, 4836-4847.

De Vita S., Orsi G., Civetta L., Carandente A., D’Antonio M., Deino A., di Cesare T., Di Vito M.A., Fisher R.V., Isaia R., Marotta E., Necco A., Ort M., Pappalardo L., Piochi M., Southon J. (1999) The Agnano-Monte Spina eruption 4100 years BP in the restless Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research, 91, 269-301.

Di Fiore V., Aiello G., Beranzoli L., Bortoluzzi G., Castellano M., D’Anna G., Favali P., Marsella E., Patanè D. (2006) Studio di utilizzazione di sorgenti sismiche marine tipo Airgun nell’esplorazione sismica tomografica di vulcani attivi: l’esempio del Vulcano Stromboli. Extended Abstract, GNGTS 2006, pp. 167-170.

Knott C.G. (1899) Reflection and refraction of elastic waves with seismological applications. Philosophical Magazine, 48, 64-97.

Judenherc S., Zollo A. (2004), The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res., 109, B10312, doi:10.1029/2003JB002876.

ISPRA (2017) Secondo rapporto sugli effetti per l'ecosistema marino della tecnica dell'airgun. Ministero dell’Ambiente, Roma, Italia, pp. 1-33.

Landmark Graphic Corporation (1998) Promax 2D Seismic Processing and Analysis. User Manual, pp. 1-386, Texas, U.S.A.

Lomax A., Zollo A., Capuano P., Virieux J. (2001) Precise absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophysical Journal International, 146, 313-331.

Liu G., Fomel S. (2013) Seismic data analysis using local time-frequency decomposition. Geophysical Prospecting, 61 (3), 516-525.

Liu G., Fomel S., Chen X. (2011) Time-frequency analysis of seismic data using local attributes. Geophysics, 76 (6), P23-P34.

Marr J.D., Zagst E.F. (1967) Exploration horizons from new seismic concepts of CDP and digital processing. Geophysics, 32, 207-224.

Mayne W.H. (1962) Horizontal data stacking techniques. Supplement to Geophysics, 27, 927-938.

Mayne W.H. (1967) Practical considerations in the use of common reflection point techniques. Geophysics, 32, 225-229.

Mormone A., Troise C., Piochi M., Balassone G., Joachimski M., De Natale G. (2015) Mineralogical, geochemical and isotopic features of tuff from CFDDP 506 m hole: Hydrothermal activity in the eastern side of the Campi Flegrei volcano (Southern Italy). Journal of Volcanology and Geothermal Research, 290, 39-52.

Pescatore T.S., Diplomatico G., Senatore M.R., Tramutoli M., Mirabile L. (1984) Contributi allo studio del Golfo di Pozzuoli – Aspetti stratigrafici e strutturali. Memorie della Società Geologica Italiana, 27, 139-149.

Scarpa R., Bianco F., Del Pezzo E., Tronca F., La Rocca M. (2000) Shallow velocity structure and heterogeneity of Mt. Vesuvius, Italy, from seismic array analysis. In: Capuano P., Gasparini P., Zollo A., Virieux J., Casale R., Yeroyanni M. (Eds.) The Internal Structure of Mt. Vesuvius, pp. 183-202.

Scarpati C., Perrotta A., Lepore S., Calvert A. (2013) Eruptive history of Neapolitan volcanoes: Constraints from 40Ar/39 Ar dating. Geological Magazine, 150, 412-425.

Sheriff R.E., Geldart R.P. (1995) Exploration Seismology. Cambridge University Press., 2nd Edition, pp. 1-419.

Torrente M.M., Milia A. (2018) Comment on “The Campi Flegrei Deep Drilling Project (CFDDP): New insight on caldera structure, evolution and hazard implications for the Naples area (Southern Italy)” by G. De Natale et al. Geochem., Geophys. Geosystems.

Xu S., Zhang Y., Pham D., Lambarè G. (2005) Antileakage Fourier transform for seismic data regularization. Geophysics, 70 (4), V87-V95.

Yilmaz O. (1987) Seismic data processing. Society of Exploration Geophysics, Tulsa.

Wang P., Gao J., Wang Z. (2014) Time-Frequency Analysis of Seismic Data Using Synchrosqueezing Transform. IEEE Geoscience and Remote Sensing Letters, 11 (12), December 2014.

Zoeppritz K. (1919) On the reflection and penetration of seismic waves through unstable layers. Goettinger Nachr, 66-84.

Zollo A., Gasparini P., Virieux J., Biella G., Boschi E., Capuano P., De Franco R., Dell’Aversana P., De Matteis R., De Natale G., Iannaccone G., Guerra I., Le Meur H., Mirabile L. (1998) An image of Mt. Vesuvius obtained by 2D seismic tomography. Journal of Volcanology and Geothermal Research, 82, 161-173.

Zollo A., D’Auria L., De Matteis R., Herrero A., Virieux J., Gasparini P. (2002) Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallow structure of Mt.Vesuvius (Southern Italy). Geophysical Journal International, 151, 566-582.

Zollo A., Judenherc S., Auger E., D’Auria L., Virieux J., Capuano P., Chiarabba C., de Franco R., Makris J., Michelini A., Musacchio G. (2003) Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophysical Research Letters, 30(19), 2002, doi:10.1029/2003GL018173, 2003.

Zollo, A., Maercklin N., Vassallo M., Dello Iacono D., Virieux J., Gasparini P. (2008), Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophysical Research Letters, 35, L12306, doi: 10.1029/2008GL034242.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.