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ABSTRACT
A number of important optimization problems have been classified as mapping applied towards segmentation of

important features. The segmentation of important features can be formulated as configurational mapping problems by
representing mapping configurations as solutions to problems of interest. One example of such configuration mapping
is found in image segmentation where an image can be represented as unique subsets of a complete image and then
evolved through mapping to become a segment of specific interest within an image. An effective segmentation mapping
algorithm must determine the specific image subsets of an image field that best exhibit an a priori set of quantitative and
qualitative characteristics. In this paper, a Genetic Optimization Mapping Algorithm is used to produce a population of
sub-images, characteristic of specific image subsets of interest that were tested via a quantitative objective function,
ranked using a linear fitness scheme, and modified using a genetic Crossover operator. The mapping algorithm is found
to converge, within fifty to one hundred generations of maps, to a good fit to the targeted mapping configuration in a
very robust and efficient manner.
Keywords: Genetic Mapping; Image processing; Medical image segmentation; Texture segmentation

1. Introduction
A number of important problems in medical image segmentation can be classified as segmentation problems. Some

medical image segmentation problems of interest are: “tissue characterization via textural quantification using
probability density function models”, and “detection of breast cancer in mammograms”. Image segmentation has been
successfully performed in the past with a variety of approaches Blostein[2], and Clark[4]. The effectiveness of each
approach depends on the type of segmentation problems to be solved. For example, if the objects we are attempting to
detect have unique intensity ranges, a threshold approach may be used. The threshold approach is based on a
discrimination of the pixel intensity values of the image based on whether a certain gray level intensity value is above
or below a predetermined threshold, Coggins[5]. This approach will work only in cases where the gray level is sufficient
to depict the desired characteristics within the image. If the information we want lies solely at the edges of the image,
one approach that has been used is edge detection, Cross[6]. In this method, the concern is to locate the boundary of an
object by locating its edges. This approach will only be valid in cases where the edges of the segments of interest are
distinctly defined. Medical images in general, cannot be classified by their intensity values or a sharp distinction of
edges, Beck[1]. A practical image segmentation problem of interest such as tumor detection, does not exhibit any of the
above characteristics and as such, the approaches mentioned earlier will not be successful for this class of segmentation
problems. Texture segmentation can be defined as a discrimination of the pixel values in an image based on their
textural content. The ability to segment a textured image into separate regions continues to be a challenging problem in
computer vision. A variety of the image segmentation methods that have been proposed are based on filter models,
where the filters are derived from Gabor elementary functions. One such method transforms the texture differences in
an image into detectable filter output discontinuities at the texture boundaries, Turner[15]. In most cases, the optimal
solutions proposed by these techniques are obtained via gradient methods. However, finding optimal solutions using
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gradient methods is very computationally intensive. This statement is true for Bayesian optimization techniques such as:
Maximum a Posteriori (MAP), Maximum Likelihood (ML) and Expected Maximization Maximum Likelihood (EMML)
and even when iterative algorithms are used, Byrne[3]. Another class of optimization algorithms finds an optimal
solution by using random search patterns based on evolutional maps driven by analogies to the behavior of physical
systems. For example, a class of optimization algorithms called Simulated Annealing Optimization Algorithms, use the
idea that when a metal is cooled slowly from its liquid to solid state, its final lattice structure tends to become more
organized and symmetrical. Moreover, the energy of the lattice energy transition states are lower than when the lattice is
cooled quickly. This empirical observation is used as the basis for the search for optimal solutions that are associated
with low energy “cooling schedules” through a Boltzman energy distribution function, Lawrence[13]. However, despite
the fact that simulated annealing algorithms do not use gradient methods, they are serial algorithms (i.e., one step of the
optimization requires the previous step), and as such, they may not be suited for applications to real time optimization
problems. In this paper, we view the segmentation problem as a configurational mapping optimization problem, where
the objective is to find a mapping configuration that best exhibits an a priori set of statistical and textural characteristics,
using a Genetic Optimization technique. Genetic Optimization Mapping Algorithms mimic some of the optimization
properties observed in natural evolution. Holland[11] believed that, appropriately incorporated in a computer algorithm,
these mapping techniques might yield an innovative method for solving difficult optimization problems in a way similar
to natural systems, through evolution. His proposed algorithms manipulated strings of binary digits that he called
chromosomes. Like nature, his proposed algorithms solved the problem of finding good chromosomes by manipulating
the material in the chromosomes “blindly”. Like nature, they knew nothing about the type of problems they were
solving. The only information they were given was an evaluation of the fitness of each individual chromosome they
produced. The only use of that evaluation was to bias the selection of chromosomes so that those with the best
evaluations tended to reproduce more often than those with lower evaluations. These mapping algorithms, using some
simple encoding and reproduction mechanisms, displayed complicated behaviors, and turned out to solve some
extremely difficult optimization problems, Dejong[8-9]. Like nature, they did so without knowledge of the decoded world
they were encoding for, an interesting and puzzling phenomenon. They were simple manipulations of relatively simple
chromosomes. Yet, when we use the descendants of these mapping algorithms, we find that they can evolve better
designs, find better schedules, develop better mappings and produce solutions to a variety of important optimization
problems, Vignaux[16] and Leether[14], that we cannot solve as well, or at all using the other well known optimization
techniques discussed earlier. In this paper, the Genetic Optimization Mapping Algorithms developed in this paper uses
the basic framework in[7],[8], and[11] with some added features and applies the technique to Medical Image Segmentation.
2.1 Genetic optimization algorithm theory

Adaptation is defined as progressive modification of a set objects I , which is done by repeated actions of a
chosen set of modifiers or operators O . The goal of adaptation is to ensure that the modifications produced by
the operators create entities that belong to a particular subset of a defined search space S . A Genetic Optimization
Algorithm A is an adaptation technique, which uses a set of factors controlling the way that the operators O
are utilized to modify the candidate objects at each stage of the adaptation process. Texture image segmentation on
the other hand, can be defined as the detection of a group of contiguous pixels in an image that have similar
statistical, structural and textural characteristics. If we assume that the segmentations of interest are gray scale
images of size  NM  , an exhaustive search, for example, of a  6464 image field requires testing

64642 
distinct possible candidate solutions. These candidate solutions are binary image maps that, when masked

over an input image, can be tested for their fitness relative to the segmentation problem of interest. An exhaustive
search for the best image map solution is clearly inefficient and becomes even more difficult as the size of the
image increases. The Genetic Optimization Mapping technique allows to efficiently search the space for the best
image map subsets of the image field, that best exhibits an a priori set of quantitative and qualitative
characteristics. The proposed Genetic Optimization Mapping Algorithm achieves this result by producing
population of sub-image maps that are tested via a quantitative objective function, ranked using a linear fitness
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and decrement scheme and modified using a random Crossover operator. The algorithm is found to converge
within fifty to one hundred generations to a good fit to the targeted mapping segmentation.
2.2 The proposed genetic optimization algorithm

The proposed Genetic Optimization mapping Algorithm A is a configurational optimization algorithm that
uses genetic operators to modify a population )(tI of candidate segmentation masks at time t into )1( tI . A
candidate segmentation mask from population )(tI is tested against a set of characteristics known a priori to be
representative of the segmentation of interest. The population )(tI is made of L candidate segmentation
masks at iteration t

 LIIIItI .,,.........,,)( 321 (2.2.1)
Each candidate segmentation mask is made of a set of k chromosomes jkjjjj ccccI ,.......,,, 321

(2.2.2)
Each chromosome is made of a set of m genes mji ggggc ,,.........,, 321

(2.2.3)
An encoding scheme is used, that maps a string of bits to a binary image mask. Each bit string is mapped to

a binary image or candidate segmentation mask by representing the bit strings as the union of a random number of
smaller bit strings, each of which can in turn be mapped to binary parallelograms. Each binary parallelogram is
determined from six components: a center  cc yx , , two radii  31 ,rr , and two angles  31 , . Also,
each binary parallelogram is referred to as a chromosome and the components that formed it are referred to as its
genes. In this mapping therefore, a chromosome is made out of six genes and a candidate image mask is made out
of the union of a random number of chromosomes  ),,,,,(...................),,,,,( 654321654321 ggggggggggggI j  (2.2.4)

Where: ccm yxrrg ,,,,, 3131  (2.2.5)
The parameters  cc yx , in (2.2.5) are the Cartesian coordinates of the center of the parallelogram,  31 ,rr

are the diagonals and  31 , , the angles that the diagonals make with the x-axis as shown in Figure 2.2.1. A
particular case where the binary image mask is made of just two chromosomes is also shown in Figure 2.2.1. The
adaptation process begins with the creation of an initial population of binary candidate image segmentation as in
(2.2.1). In any given population, candidate segmentation maps will have a random number of chromosomes, and
each chromosome is constructed as described by (2.2.4) and (2.2.5). The candidate segment is accepted as a valid
candidate only if its area is such that it obeys the following relationship:

iticit ISISIS _2__  (2.2.6)
Where ic IS _ is the area of the candidate and it IS _ , the area of the target. The chromosomes, which

make a candidate map are therefore chosen such that the total area covered by their union, as shown in Figure
2.2.1, satisfies (2.2.6). Then, the proposed Genetic Optimization Mapping Algorithm A takes the set of
candidate segments of a given population )(tI from the search space and produce another set of candidate
segments )1( tI from the search space such as:

)1())((  tItIA (2.2.7)
In addition, the proposed Genetic Optimization Mapping Algorithm A contains a reproduction process,

which applies the Crossover operator C to pairs of candidate segments, usually called the parents, to produce
another pair of candidate segments, usually called the children. In addition, a random bit Mutation operator M ,
is applied to the entire population of children candidate segments. Both the Crossover and Mutation operators
perform modifications such as to produce children candidate segments of the search space whose characteristics
match those of the segmentation of interest as:

)1()))((())((  tItICMtIA (2.2.8)
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The proposed Genetic Optimization Mapping Algorithm A also uses an information function that consists
of a set of goodness evaluations and ranking measures. From the information function, the algorithm is able to
determine the pairs of parent candidate segmentations with the highest rankings and consequently biases the
Crossover operator process such that it will take place more often with those segmentations of high-ranking
evaluations and high fitness measurements. The biasing is done in such a way that does not entirely preclude
candidate segmentations of poor fitness from taking part in the process. As such, candidate segmentations with
poor fitness, but that may potentially contain genetic information, which may help the adaptation process are still
allowed to participate in the reproduction process.
2.3 The crossover module

The operation performed by the cross over module for the proposed Genetic Optimization Mapping Algorithm
can be summarized as follows:

Two parent candidate segmentations  21 , II are randomly selected from a given population )(tI as:
 nxxxxx cccccccI  1312111112111 .......,,,,,...., (2.3.1)
 nxxxxx cccccccI  2322212222212 .......,,,,,...., (2.3.2)

with the highest ranked segmentation maps having a higher probability of being selected. A random
Crossover point x is chosen such that it belongs to both chromosomes  21 , II . Two new candidate
segmentations, the children candidate segmentations are formed from  21 , II by first, exchanging the set of
attributes to the right of a chosen Crossover position x of parent candidate 1I with those to the right of
position x of parent candidate 2I yielding the child candidate

cI1 . Another child candidate
cI 2 is created by

reversing the process above finally resulting into two children  cc II 21 , described by the following set of
chromosomes

 nxxxxx
c cccccccI  2322212112111 .......,,,,,...., (2.3.3)

 nxxxxx
c cccccccI  1312111222212 .......,,,,,...., (2.3.4)

The Crossover operator when applied to pairs of parent segmentations potentially generates offspring
segmentation maps not in the original population. It also potentially creates candidate segmentation maps with
features not contained or seen in the original population. The simulations conducted in this paper, using the
proposed Genetic Optimization Mapping algorithm shows that, as was predicted in Holland[11], the algorithm
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tends to produce candidate segments with increased complexity.
2.4 The mutation module

A mutation feature is introduced in this mapping technique to guard against rapid homogeneity within the
gene pool and as a result to prevent premature convergence. Mutation randomly alters the bits of a gene from a 0
value to a 1 or vice versa with a predefined probability mP . The primary purpose of mutation is to introduce
occasional perturbations in the estimated parameters of Equations (2.2.4) and (2.2.5) to ensure that all points in
the mapping space can potentially have a chance at participating in the adaptation process. The bit Mutation
operator allows reaching points within the mapping space by performing affine transformations such as scaling,
shifting, rotation on individual candidate binary image masks. Generally if mP is large, the convergence is
faster but larger errors will result. This is somewhat analogous to the step size parameter in gradient algorithms;
larger step sizes usually imply faster convergence with higher errors whereas smaller step sizes imply slower
convergence but smaller errors. In this paper, a conventional bit mutation scheme is used. Upon creating a
population of candidate segmentation, the candidate bit string counterparts are gathered together into a single bit
string. We perform the bit mutations by finding the number of bits to be mutated based on a predefined bit
mutation rate or probability. We also randomly determine the position of the bits to be mutated within the
population string. For the simulations used in this paper, a bit mutation probability of 0.001 is used that is, one in
every thousand bits is mutated in the entire population. Dejong[8] showed that Genetic Optimization Mapping
Algorithms of population sizes from 50 to 100, taken through twenty five to fifty generations with bit mutation
probabilities of 0.001, converge to near optimum solutions.
2.5 The ranking module

A linear fitness and decrement scheme is used to rank the candidate segmentations of a given generation. The
ranking module receives a set of “goodness of fit” measurements from the goodness of fit module. The highest
ranking is associated to the candidate segment with the highest goodness of fit measurement and successive
candidates are linearly ranked. For example, let’s assume that the linear ranking module receives a set of goodness
of fit measurements from a population of 8 candidate segments: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2. First, the
goodness of fit measurements are sorted in descending order and subsequently linearly ranked from 8 to 1: 8, 7, 6,
5, 4, 3, 2, 1. Then, new goodness of fit measurements are assigned to the candidate segmentations according to the
formula:

SP
IRIG i

i

)()( 
(2.5.1)

where, R is the ranking function and SP the size of the population. The following set of goodness of fit
measurements is produced: 1.0, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25, and 0.125. The reader may notice that the
linear ranking scheme rearranges the goodness of fit measurements such that in general, the candidates with the
lowest evaluations would end up with slightly higher evaluations. Davis[7] discusses how this scheme plays an
important role in ensuring that segmentations solutions other than the fittest are selected by the Crossover module.
By ranking all individuals linearly, the linear fitness scheme ensures that candidate segmentations of low goodness
of fits will have a higher probability of being processed by the Crossover operator, but candidates of poor fitness
containing important genetic information can still participate in the adaptation process.
2.6 The fitness module

Fitness viewed as a measure of the adaptive influence upon the future, introduces a concept useful through
the whole spectrum of adaptation. The sample space of all possible candidate segmentation maps iI , that can be
generated from the desired encoding mechanism, is examined through an objective function )( iIG , which
compares the elements of the mapping space to an a priori set of characteristics representative of the segmentation
problem of interest. In this paper, the objective function evaluates three characteristics of the candidate
segmentation map. The first evaluation concerns the candidate’s statistical content or Texture )( iIT . This
evaluation is achieved through a Chi-square test. The Chi-square test compares all the moments of the probability
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distribution of a candidate segmentation to an a priori determined probability distribution function based on our
prior knowledge of the probabilistic features of the segmentation features of interest. The Chi-Square comparison
is done by first finding the Pearson’s statistics

2 as
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(2.6.1)
Where iN is the histogram of the candidate and in that of a target. The Pearson’s statistics

2 is then
normalized using a variable estimate V , which is the sum of the squares of p , zero mean, unit variance,
Gaussian random variables ix as:
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(2.6.2)
The normalized result V

2
is then used as an argument to the Q -function as:
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A large value of

2 in (2.6.2) produces a small probability in (2.6.4) indicating that the candidate
corresponding to the histogram iN is very unlikely. Then, a shape component of a candidate segment )( iISh

contrasts the degree in circular irregularity between the candidate map and a predefined morphological template
characteristic of our knowledge of some of the geometrical characteristics of the segmentation of interest. The
function )( iISh performs the shape evaluation using an eight-radial template measurement approximation of
the candidate segment solution as shown in Figure 2.6.1. The function )( iISh measures the approximated
difference between the template of the candidate segments iI , and an assumed template iIT _ , characteristic of
the segmentation problem of interest, by evaluating the weighted square distances between these templates along
the eight radial measurements as
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(2.6.4)

Where, iIW _ is the worse candidate template with respect to the assumed template iIT _ . The final

evaluation relates to the size )( iISz of the candidate segment, and a double exponential cost function is used
that penalizes candidate segmentation maps of sizes much greater than that of a predefined target segmentation
map from being accepted such as:

itiit ISISzIS _2)(_  (2.6.5)
Where, it IS _ is the predefined area of the segmentation map of interest. These three evaluations are then

weighted and combined to form the goodness of fit measurement as:
)()()()( 321 iiii ISzIShITIG   (2.6.6)

The overall goodness of any candidate segment is consequently based on our basic prior knowledge of the
textural, and geometrical characteristics of the segmentation candidates of interest. The goodness of fit measure
limits the subsets of sub-images of interest in their size or the number of pixels they contain, their shape or the
way in which the pixels are arranged, and their texture or the statistical features we expect the set of pixels,
which belong to the subsets of interest to have. The si ' are chosen in a manner which reflects the amount and
quality of prior information about the texture, morphological and geometrical characteristics of the segmentation
problems of interest. When we have average information in these areas, an equal weighting is used. A block
diagram implementation of the Genetic Optimization Mapping Algorithm, proposed in this paper, is given in the
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following section. The algorithm starts with a set of
individuals as given by (2.2.1) and (2.2.2). The individuals
are

then evaluated and consequently ranked as described in sections 2.5 and 2.6. Fifty percent of the ranked
individuals are consequently inputted to the cross over module and the other 50% is selected randomly from
the best-fit individuals of the previous generation. A random bit mutation operator randomly mutates single bits
from the entire population (the mutated offsprings are represented by cross lines). At this point, the process is
repeated as this cycle continues until complete convergence or a single outstanding individual map is found.
2.7 The block diagram representation
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3. Results, discussions and future recommendations
3.1 Results and discussions

Four simulations were conducted. In each simulation, a 128x128 gray scale input image was used. The input image
that is used is made of two main components, a background and a target with different textural, morphological and size
characteristics. The simulation results are presented in Figure 3.1.1 to Figure 3.1.8. There are two Figures per
simulation. The first Figure in each case shows a partial summary of the adaptation process by showing the best and
worse four candidates of the first population, the best and worse four candidates of the last population, the best of the
first and last population, the input image that is used and the input target that is sought. The second Figure in each
case shows a set of goodness of fit histograms for the first, the fiftieth and the hundredth generations. The adaptation
parameters; size of the population (1000), and bit mutation rate (0.001) are chosen based on the results of previous
studies, Davis[7], and Dejong[8,9]. The linear ranking and decrement scheme as well as the random Crossover operator
are unique to the set of Genetic Optimization Algorithms developed in this paper. The objective in the first three
simulations is to demonstrate the ability to perform textural segmentations using the proposed Genetic Optimization
Algorithm. In the first simulation, after 100 populations the algorithm found the following results: the mean and
variance of the best candidate segmentation solution were 39.7986 and 49.7543 compared to 40 And 49 for the target.
The area of the best candidate segmentation was 2266 pixels compared 2269 for the target. The Chi-square, Shape and
Size evaluation were: 0.794, 0.9973, 0.9967 respectively. As a result, the overall goodness of fit evaluation for the best
candidate segmentation is 0.9935, and the results are shown in Figure 3.1.1. In Figure 3.1.2, the convergence
characteristics for this simulation are displayed. In Figure 3.1.1, we see that in the first population, candidate
segmentations are created all over the image field. This is also verified in Figure 3.1.2 by observing that, while we have
candidates with very poor goodness of fits (0.1 to 0.3), we also have a significant number of good average candidates
(0.5), and other good candidates well above the average mark (0.6 to 0.7). By the hundreth generation, the goodness of
fit histogram has evolved considerably towards the exponential profile depicted in Figure 3.1.2. The convergence
characteristics shown in Figure 3.1.2 suggest that in this simulation example, the Genetic Optimization process does
find better and evolved candidates to the segmentation problem of interest. In addition, visual investigation of the
results in Figure 3.1.1 reveals that the best four candidate image masks proposed in the first population although
positioned correctly within the image field do not have the morphological characteristics of the target being
sought. This observation seems to indicate that the algorithm may be able to identify the textural characteristics of
the target within a few generations while still lacking knowledge of other possible characteristics such as its
morphology and size.
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However, the best four candidate image masks proposed in the last population, in addition to their position
within the image field do have morphological, size and position characteristics within the image field similar to
that of the target. These features of the Genetic Optimization technique developed in this paper are
significant because, in the case of early detection of breast, and teeth tumors for instance, the textural,
morphological and size characteristics may be built a priori as part of the optimization process through a training
procedure. The training can be performed on an ensemble of images from a random process model characteristic
of the segmentation problem of interest. In this case, the algorithm would be able to identify within the image
field, correlations between a priori sample features and a given candidate, even when these correlations could
not be identified with the naked eye. Late detection of the cancer types mentioned earlier could be prevented with
such technique. In the second simulation, we take away our knowledge of the morphological characteristics of the
target sought in order to investigate the algorithm’s ability to find a good candidate segment with sole knowledge
of its textural characteristics. The results are shown in Figure 3.1.3 and Figure 3.1.4. The convergence
characteristics in this example are almost similar as in the previous example, as seen in Figure 3.1.4.

However, the progression of the goodness of fit histograms from a fairly average profile to an exponential
profile is not as pronounced as in the first case. The convergence characteristics shown in Figure 3.1.4 do suggest
that the adaptation is successfully producing evolved candidate segments but not in as a smooth a manner as in the
previous example, as shown by the results in Figure 3.1.3. This behavior may be due to the fact that without
further knowledge of the characteristics of the target, the Genetic Optimization process may be limited in its
ability to produce an outstanding candidate. The behavior may also be hinting at the possibility that the Genetic
Optimization process may require a lot of a priori approximate information about the class of segmentation
problems of interest. Visual observation of the results displayed in Figure 3.1.3 suggests that despite limited a
priori knowledge of the morphological characteristics of the target, the algorithm chooses an optimum candidate
segment, which has some knowledge of the morphological characteristics of the target sought, although not as
defined as in the first example. This simulation example gives us a way to predict how we may be able to use the
Genetic Optimization technique in cases where we may not know how large and of what shape we expect a tumor
to be. The reader may note that in tumor diagnostic cases for instance, we may not know if “tissue malignancy” is
present within the image field. In addition, when “tissue malignancy” is present, we may not know where it may
reside within the image field. All we may know before hand are the inherent geometrical and textural
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characteristics of “tissue malignancy” based on the class of segmentation problems of interest. The ability for the
Genetic Optimization technique to suggest the coordinate or position of a group of “malignant tissue” within the
image field is significant as it directly addresses the potential for this technique to be used for “positional
detection” even when no “malignant tissue” can be identified with the naked eye through a mammogram, or a
radiograph. In the third simulation, we allow the target to change in its morphological characteristics. The reader
will note from Figure 3.1.5 that a piece of the target is taken away, and the objective is to investigate whether the
Genetic Optimization process takes this change into account and attempts to factor the change in the candidate
solutions it proposes. Visual observation of the results in Figure 3.1.5 and Figure 3.1.6 suggests that the Genetic
Optimization process found it difficult to completely include the added knowledge in morphological
characteristics of the segmentation being sought. Although careful observation of the optimum solution proposed
reveals that it does contain some knowledge of the added morphological characteristics (the best solution
proposed has a small cut on the top right). In thinking about possible reasons why the morphological
characteristics may not be included as desired, we look at the encoding mechanism that is used to go from strings
of binary digits to binary parallelograms, and finally to binary image masks. We realize that the nature of the
solutions we obtain would inherently be limited in flexibility by the nature of the encoding mechanism we use.
The encoding mechanism therefore plays an important role both in the smoothness and the geometrical nature of
the solutions we obtain. This observation hints at the fact that in order to create flexible Genetic Optimization
techniques that may be applied to image segmentation, it may be worth incorporating encoding mechanisms that
are characteristic of the segmentation problems of interest. In other words, the nature of the segmentation
problems of interest may be intimately tied to the nature of the encoding mechanism we use. Finally, we look at
the behavior and performance of the Genetic Optimization process developed in this paper in a real case. In this
simulation example, we consider realizations of a random process characteristic of human teeth and we use
sample realizations of this process as a training set to create a priori information about the textural nature of
human teeth versus human gums. The objective in this simulation is to investigate the potential utility of the
Genetic Optimization process in differentiating between teeth and gums, healthy teeth and gums versus possibly
diseased ones. In this particular example, we investigate the simpler case of segmenting a tooth from its gum.

Visual observation of the results of Figure 3.1.7 and Figure 3.1.8 reveals that the segmentations results
proposed after 100 generations were significantly better than that of the first generation. In particular, the reader
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may note that the position of the upper section of the tooth was correctly identified. In addition, the overall
characteristics of the upper section of the tooth were also found. However, the algorithm could not correctly
describe the shape and size of the upper tooth section. This is a potential difficulty since in most real segmentation
cases, we may know very little about the shape and size of the segmentation being sought. In most cases, it may
even be difficult to correctly and accurately describe the textural characteristics of the segmentation being sought.
This simulation example allows investigating the potential behavior of the Genetic Optimization process in those
cases. The results in Figure 3.1.7 suggest that the Genetic Optimization Algorithm developed in this paper
could benefit from better morphological and textural representations of the segmentation problems of interest. The
results also suggest that in this specific example, the flexibility in encoding mechanism significantly affects the
nature and smoothness of the segmentation solutions.

3.2 Conclusions
The utility of the Genetic Optimization process was investigated. The results described above illustrate the

potential usefulness of such technique in configurational optimization problems. The algorithm’s effectiveness in
Medical Image segmentation was also investigated. In this case, the results suggest that the nature of the solutions we
obtain may be intimately tied to the nature of our prior knowledge about the medical image segmentation of interest.
The type of encoding mechanisms used also limits the nature of the solutions. The encoding mechanism that is
currently being used in the Genetic Optimization process is not as flexible as desired to obtain smooth solutions when
applied to the class of problems of interest. Issues of flexibility in the encoding mechanism become extremely important
when only minor changes are needed in order to effect significant improvements in the genetic make up of a particular
individual segmentation solution. In addition, a bit mutation module, which allows to controllably affect the size, shape
and texture of individual candidates within any given population may be more suited for the class of segmentation
problems considered in this paper. The Genetic Optimization technique developed in this paper introduces some added
parameters to the optimization process when compared to its predecessors. A random rather than a fixed Crossover
operator was introduced as part of the Genetic Optimization process. Random Crossover introduces more flexibility in
the mating of candidate segments and affects the nature of the resulting solutions. Also a linear fitness and decrement
scheme was introduced which biases the parent selection process so as to allow individual segmentation solutions with
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poor goodness of fit but potentially good genetic information to make it to the adaptation process. These features
although they depart from the basic Genetic Algorithms proposed in Davis[7], Dejong[8,9], Holland[11] and Lawrence[12],
do not allow us to understand how the overall convergence characteristics of the process is affected.
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