A λ-c- genetic Algorithm for Integrals with Fuzzy Measure
Article ID: 546
Vol 3, Issue 1, 2020
Vol 3, Issue 1, 2020
VIEWS - 5350 (Abstract)
Abstract
In this paper, beginning we define a fuzzy Parametric measure, with having values of a weight function on n points. Afterwards, we obtain one equation by use from properties of fuzzy measure that with solving equation, we define parameters of fuzzy measure. For solving equation, we design a genetic algorithm and hereby we provide the facility of solving integrals.
Keywords
fuzzy measure; fuzzy integral; genetic algorithm
Full Text:
PDFReferences
- A. Basile, Fuzzy Sets and Systems 21, 243-247 (1987).
- M. T. Chu, Z. Shyu, J. and G. H. Tzeng, IEEE Transactions on Engineering Management 54 (2), 237-339 (2007).
- C. M. Feng, P. G. Wu and K. C. Chia, European Journal Operational Research 192, 451-464 (2009).
- D. E. Goldberg, Addison-Wesley, Reading, MA, 1989.
- L. Galand, P. Perny, O. Spanjaard, European Journal of Operational Research 204 (2), 303-315 (2010)
- M. Grabisch, European Journal of Operational Research 89 (3), 445-456 (1996).
- M. Grabisch, Fuzzy measures and integrals, Springer Verlag (2000).
- M. Grabisch, T. Murofushi and M. Sugeno, Fuzzy Sets and Systems 92, 167-189 (1997).
- M. Grabisch, Fuzzy Sets and Systems 69, 279-298 (1995).
- Y. C. Hu, Neurocomputing 72, 331-340 (2008).
- K. Leszczynski, P. Penczek and W. Grochuliski, Fuzzy Sets and Systems 15, 147-158 (1985).
- D. Liginlal and T. T. Ow, Fuzzy Sets and Systems 157, 3040-3054 (2006).
- T. Murofushi and M. Sugeno, Fuzzy Sets and systems 29, 201-227 (1989).
- Y. Narukawa and V. Torra, Information Sciences 177, 4686-4695 (2007).
- Y. Narukawa, T. Murofushi and M. Sugeno, Fuzzy Sets and systems 112, 177-186 (2000).
- T. Onisawa, M. Sugeno, M. Y. Nishiwaki, H. Kawai and Y. Harima, Fuzzy Sets and Systems 20, 259-289 (1986).
- M. Sugeno, Theory of fuzzy integrals and applications, Ph.D. Dissertation, Tokyo Institute of Technology, 1974.
- G. H. Tzeng, Y. P. Q. Yang, C. T. lin and C. B. Chen, Information Sciences 169, 409-426 (2005).
- Z. Wang and G. J. Klir, Fuzzy measure theory, Plenum Press, New York, 1992.
- S. T. Wierzchon, Fuzzy Sets and Systems 9, 69-78(1983)
DOI: https://doi.org/10.24294/ijmss.v1i3.546
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.