Reconceptualizing Zero as the Convergence of Infinity

Sahin Ciner

Article ID: 11811
Vol 8, Issue 1, 2025

VIEWS - 6 (Abstract)

Abstract


This paper reconceives zero not as a mere absence but as an axis unifying positive and negative infinities. We introduce the notion of Unzero (Ø) to emphasize zero’s active role in mathematical structure. By analyzing limits of the form n/m as m→0⁺ and m→0⁻, we show that Unzero naturally serves as a pivot between divergent magnitudes. We formalize Unzero within a minimal algebraic extension of the real numbers, compare it with projective and non‑standard frameworks, and explore illustrative examples in analysis and geometry. This unified perspective clarifies longstanding ambiguities around division by zero, offers a coherent notation respecting classical limits, and suggests avenues for further algebraic and topological development.


Keywords


Unzero; Zero; Infinity; Critical Thinking; Extended Real Line; Projective Geometry



References

1. Bell, J. L., & Slomson, A. B. (1966). Models and ultraproducts: An introduction. North‑Holland.

2. Bergstra, J. A., & Tucker, J. V. (2007). The structure of meadows. Journal of Logic and Algebraic Programming, 63(2), 152–169.

3. Borel, É. (1898). Leçons sur la théorie des fonctions. Gauthier‑Villars.

4. Cantor, G. (1891). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Journal für die reine und angewandte Mathematik, 184, 1–35.

5. Conway, J. B. (1978). Functions of one complex variable I (2nd ed.). Springer.

6. Goldblatt, R. (1998). Lectures on the hyperreals: An introduction to nonstandard analysis. Springer.

7. Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space‑time. Cambridge University Press.

8. Kaplan, R. (1999). The nothing that is: A natural history of zero. Oxford University Press.

9. Mac Lane, S. (1998). Categories for the working mathematician (2nd ed.). Springer.

10. Mwangi, W. P. (2018). Division of zero by itself—Division of zero by itself has unique solution. Pure and Applied Mathematics Journal, 7(3), 20–36.

11. Robinson, A. (1966). Non-standard analysis. North‑Holland.

12. Smith, J., & Patel, R. (2024). Teaching division by zero using axis‑of‑infinity notation. International Journal of Mathematics Education, 55(1), 45–62.

13. Wallis, J. (1655). De sectionibus conicis. Oxford University Press.

14. Zhao, L., Hernández, M., & Chu, D. (2023). Tagged infinities in numerical libraries: A performance study. ACM Transactions on Mathematical Software, 49(4), 1‑20.



DOI: https://doi.org/10.24294/ijmss11811

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.