Emerging frontiers: Harnessing the power of CNT/GO-based biosensors for early disease biomarker detection
Vol 8, Issue 1, 2025
Abstract
This review discusses the significant progress made in the development of CNT/GO-based biosensors for disease biomarker detection. It highlights the specific applications of CNT/GO-based biosensors in the detection of various disease biomarkers, including cancer, cardiovascular diseases, infectious diseases, and neurodegenerative disorders. The superior performance of these biosensors, such as their high sensitivity, low detection limits, and real-time monitoring capabilities, makes them highly promising for early disease diagnosis. Moreover, the challenges and future directions in the field of CNT/GO-based biosensors are discussed, focusing on the need for standardization, scalability, and commercialization of these biosensing platforms. In conclusion, CNT/GO-based biosensors have demonstrated immense potential in the field of disease biomarker detection, offering a promising approach towards early diagnosis. Continued research and development in this area hold great promise for advancing personalized medicine and improving patient outcomes.
Keywords
Full Text:
PDFReferences
1. Sabu C, Henna TK, Raphey VR, et al. Advanced biosensors for glucose and insulin. Biosensors and Bioelectronics. 2019; 141: 111201. doi: 10.1016/j.bios.2019.03.034
2. Pour GB, Ashourifar H, Aval LF, et al. CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers. Symmetry. 2023; 15(6): 1179. doi: 10.3390/sym15061179
3. Hu Y, Lv S, Wan J, et al. Recent advances in nanomaterials for prostate cancer detection and diagnosis. Journal of Materials Chemistry B. 2022; 10(26): 4907-4934. doi: 10.1039/d2tb00448h
4. Santiago E, Poudyal SS, Shin SY, et al. Graphene Oxide Functionalized Biosensor for Detection of Stress-Related Biomarkers. Sensors. 2022; 22(2): 558. doi: 10.3390/s22020558
5. Karimi F, Karimi-Maleh H, Rouhi J, et al. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. Environmental Research. 2023; 239: 117368. doi: 10.1016/j.envres.2023.117368
6. Ma Z, Wang W, Xiong Y, et al. Carbon Micro/Nano Machining toward Miniaturized Device: Structural Engineering, Large‐Scale Fabrication, and Performance Optimization. Small. 2024. doi: 10.1002/smll.202400179
7. Li X, Wang Y, Zhao Y, et al. Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures. 2021; 3(1). doi: 10.1002/sstr.202100124
8. Reddy YVM, Shin JH, Palakollu VN, et al. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Advances in Colloid and Interface Science. 2022; 304: 102664. doi: 10.1016/j.cis.2022.102664
9. Mazzaglia A, Piperno A. Carbon Nanomaterials for Therapy, Diagnosis and Biosensing. Nanomaterials. 2022; 12(9): 1597. doi: 10.3390/nano12091597
10. Pandey RR, Chusuei CC. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules. 2021; 26(21): 6674. doi: 10.3390/molecules26216674
11. Curcio M, Farfalla A, Saletta F, et al. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules. 2020; 25(9): 2102. doi: 10.3390/molecules25092102
12. Alagumalai K, Musuvadhi Babulal S, Chen SM, et al. Electrochemical evaluation of naproxen through Au@f-CNT/GO nanocomposite in environmental water and biological samples. Journal of Industrial and Engineering Chemistry. 2021; 104: 32-42. doi: 10.1016/j.jiec.2021.08.009
13. Lee M, Kim MC, Lee JY. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine. 2022; 17: 6181-6200. doi: 10.2147/ijn.s386763
14. Nazare A, Pal K, Maji S. Electrochemical biosensors. Food, Medical, and Environmental Applications of Polysaccharides. 2021; 403-441. doi: 10.1016/b978-0-12-819239-9.00011-7
15. Reanpang P, Mool-am-kha P, Upan J, et al. A novel flow injection amperometric sensor based on carbon black and graphene oxide modified screen-printed carbon electrode for highly sensitive determination of uric acid. Talanta. 2021; 232: 122493. doi: 10.1016/j.talanta.2021.122493
16. Danielsen PH, Bendtsen KM, Knudsen KB, et al. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Particle and Fibre Toxicology. 2021; 18(1). doi: 10.1186/s12989-021-00432-z
17. Alsalme A. CNTs intercalated graphene oxide with interspersed MoS2 nanoparticles for selective preconcentration and determination of trace Hg (II) ions. Food Chemistry. 2023; 428: 136777. doi: 10.1016/j.foodchem.2023.136777
18. Shahazi R, Majumdar S, Saddam AI, et al. Carbon nanomaterials for biomedical applications: A comprehensive review. Nano Carbons. 2023; 1(1): 448. doi: 10.59400/n-c.v1i1.448
19. Biranje PM, Prakash J, Alexander R, et al. Ultra-fast detection and monitoring of cancerous volatile organic compounds in environment using graphene oxide modified CNT aerogel hybrid gas sensor. Talanta Open. 2022; 6: 100148. doi: 10.1016/j.talo.2022.100148
20. Kanagavalli P, Eissa S. Redox probe-free electrochemical immunosensor utilizing electropolymerized melamine on reduced graphene oxide for the point-of-care diagnosis of gastric cancer. Talanta. 2024; 270: 125549. doi: 10.1016/j.talanta.2023.125549
21. Gholami A, Mousavi SM, Masoumzadeh R, et al. Advanced Theranostic Strategies for Viral Hepatitis Using Carbon Nanostructures. Micromachines. 2023; 14(6): 1185. doi: 10.3390/mi14061185
22. Wang X, Tang Y, Cheng S, et al. Polydimethylsiloxane Composite Sponge Decorated with Graphene/Carbon Nanotube via Polydopamine for Multifunctional Applications. ACS Applied Polymer Materials. 2023; 5(8): 6022-6033. doi: 10.1021/acsapm.3c00718
23. Jeong H, Nguyen DM, Lee MS, et al. N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor. Materials Science and Engineering: C. 2018; 90: 38-45. doi: 10.1016/j.msec.2018.04.039
24. Pasinszki T, Krebsz M, Tung TT, et al. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors. 2017; 17(8): 1919. doi: 10.3390/s17081919
25. Fu L, Zheng Y, Li X, et al. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules. 2023; 28(18): 6719. doi: 10.3390/molecules28186719
26. Son MH, Park SW, Sagong HY, et al. Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BioChip Journal. 2022; 17(1): 44-67. doi: 10.1007/s13206-022-00089-6
27. Barhoum A, Altintas Z, Devi KSS, et al. Electrochemiluminescence biosensors for detection of cancer biomarkers in biofluids: Principles, opportunities, and challenges. Nano Today. 2023; 50: 101874. doi: 10.1016/j.nantod.2023.101874
28. Xue VW, Wong CSC, Cho WCS. Early detection and monitoring of cancer in liquid biopsy: advances and challenges. Expert Review of Molecular Diagnostics. 2019; 19(4): 273-276. doi: 10.1080/14737159.2019.1583104
29. Kumar P, Gupta S, Das BC. Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Translational Oncology. 2024; 40: 101827. doi: 10.1016/j.tranon.2023.101827
30. Li L, Jiang H, Zeng B, et al. Liquid biopsy in lung cancer. Clinica Chimica Acta. 2024; 554: 117757. doi: 10.1016/j.cca.2023.117757
31. Mohan V, Pal A, Trabelsi Y, et al. Tuning Sensitivity of Surface Plasmon Resonance Sensor Based on Bi-metallic, Antimonene, and Carbon Nanotube for Tuberculosis Detection. Plasmonics. 2024. doi: 10.1007/s11468-024-02268-7
32. Sha R, Badhulika S. Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Microchimica Acta. 2020; 187(3). doi: 10.1007/s00604-020-4152-8
33. Kumar S, Wang Z, Zhang W, et al. Optically Active Nanomaterials and Its Biosensing Applications—A Review. Biosensors. 2023; 13(1): 85. doi: 10.3390/bios13010085
34. Behyar MB, Mirzaie A, Hasanzadeh M, et al. Advancements in biosensing of hormones: Recent progress and future trends. TrAC Trends in Analytical Chemistry. 2024; 173: 117600. doi: 10.1016/j.trac.2024.117600
35. Shahzad K, Mardare AI, Hassel AW. Accelerating materials discovery: combinatorial synthesis, high-throughput characterization, and computational advances. Science and Technology of Advanced Materials: Methods. 2024; 4(1). doi: 10.1080/27660400.2023.2292486
36. Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Analytical and Bioanalytical Chemistry. 2021; 414(1): 167-180. doi: 10.1007/s00216-021-03553-8
37. Almeida EMF, De Souza D. Current electroanalytical approaches in the carbamates and dithiocarbamates determination. Food Chemistry. 2023; 417: 135900. doi: 10.1016/j.foodchem.2023.135900
38. Venkateswara Raju C, Hwan Cho C, Mohana Rani G, et al. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coordination Chemistry Reviews. 2023; 476: 214920. doi: 10.1016/j.ccr.2022.214920
39. Kokabi M, Tahir MN, Singh D, et al. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis. Biosensors. 2023; 13(9): 884. doi: 10.3390/bios13090884
40. Rasheed S, Kanwal T, Ahmad N, et al. Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC Trends in Analytical Chemistry. 2024; 173: 117640. doi: 10.1016/j.trac.2024.117640
41. Maity A, Milyutin Y, Maidantchik VD, et al. Ultra‐Fast Portable and Wearable Sensing Design for Continuous and Wide‐Spectrum Molecular Analysis and Diagnostics. Advanced Science. 2022; 9(34). doi: 10.1002/advs.202203693
42. Purohit B, Kumar A, Mahato K, et al. Smartphone-assisted personalized diagnostic devices and wearable sensors. Current Opinion in Biomedical Engineering. 2020; 13: 42-50. doi: 10.1016/j.cobme.2019.08.015
43. Shariati L, Esmaeili Y, Rahimmanesh I, et al. Advances in nanobased platforms for cardiovascular diseases: Early diagnosis, imaging, treatment, and tissue engineering. Environmental Research. 2023; 238: 116933. doi: 10.1016/j.envres.2023.116933
44. Kang MS, Lee H, Jeong SJ, et al. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines. 2022; 10(6): 1374. doi: 10.3390/biomedicines10061374
45. Sharma A, Panchal D, Prakash O, et al. Fabrication of nanomaterials for biomedical imaging. Advanced Nanomaterials for Point of Care Diagnosis and Therapy. 2022; 81-100. doi: 10.1016/b978-0-323-85725-3.00023-4
46. Jeong S, Yoo SW, Kim HJ, et al. Recent Progress on Molecular Photoacoustic Imaging with Carbon-Based Nanocomposites. Materials. 2021; 14(19): 5643. doi: 10.3390/ma14195643
47. Abedi-Firoozjah R, Ebdali H, Soltani M, et al. Nanomaterial-based sensors for the detection of pathogens and microbial toxins in the food industry; a review on recent progress. Coordination Chemistry Reviews. 2024; 500: 215545. doi: 10.1016/j.ccr.2023.215545
48. Alshemary AZ, Motameni A, Evis Z. Biomedical applications of metal oxide–carbon composites. Metal Oxide-Carbon Hybrid Materials. 2022; 371-405. doi: 10.1016/b978-0-12-822694-0.00004-1
49. Hsiao YS, Tseng HS, Yen SC, et al. Three-dimensional conductive PEDOT: PSS-based mixed-matrix scaffolds for efficient removal of protein-bound uremic toxins and high-throughput collection of circulating tumor cells. Chemical Engineering Journal. 2023; 453: 139782. doi: 10.1016/j.cej.2022.139782
50. Aggarwal C, Rolfo CD, Oxnard GR, et al. Strategies for the successful implementation of plasma-based NSCLC genotyping in clinical practice. Nature Reviews Clinical Oncology. 2020; 18(1): 56-62. doi: 10.1038/s41571-020-0423-x
51. Sengupta J, Hussain CM. CNT and Graphene-Based Transistor Biosensors for Cancer Detection: A Review. Biomolecules. 2023; 13(7): 1024. doi: 10.3390/biom13071024
52. Kaur Billing B. Carbon Nanotubes and its Potential Application in Sensing. ChemistrySelect. 2021; 6(36): 9571-9590. doi: 10.1002/slct.202102636
53. Sivakumar R, Lee NY. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Analytica Chimica Acta. 2022; 1234: 340297. doi: 10.1016/j.aca.2022.340297
54. Wang T, Wang M, Wang J, et al. A chemically mediated artificial neuron. Nature Electronics. 2022; 5(9): 586-595. doi: 10.1038/s41928-022-00803-0
55. Ji M, Zhong Y, Li M, et al. Determination of acetic acid in enzymes based on the cataluminescence activity of graphene oxide–supported carbon nanotubes coated with NiMn layered double hydroxides. Microchimica Acta. 2023; 190(6). doi: 10.1007/s00604-023-05808-w
56. Heydari-Bafrooei E, Ensafi AA. Nanomaterials-based biosensing strategies for biomarkers diagnosis, a review. Biosensors and Bioelectronics: X. 2023; 13: 100245. doi: 10.1016/j.biosx.2022.100245
57. Chen Z, Yang Z, Yu T, et al. Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature monitoring with superlative temperature range and sensitivity. Composites Science and Technology. 2023; 232: 109881. doi: 10.1016/j.compscitech.2022.109881
58. Chellachamy Anbalagan A, Sawant SN. Redox-labelled detection probe enabled immunoassay for simultaneous detection of multiple cancer biomarkers. Microchimica Acta. 2023; 190(3). doi: 10.1007/s00604-023-05663-9
59. Chen F, Hu Q, Li H, et al. Multiplex Detection of Infectious Diseases on Microfluidic Platforms. Biosensors. 2023; 13(3): 410. doi: 10.3390/bios13030410
60. Jalilinejad N, Rabiee M, Baheiraei N, et al. Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering. Bioengineering & Translational Medicine. 2022; 8(1). doi: 10.1002/btm2.10347
61. Li J, Chang H, Zhang N, et al. Recent advances in enzyme inhibition based-electrochemical biosensors for pharmaceutical and environmental analysis. Talanta. 2023; 253: 124092. doi: 10.1016/j.talanta.2022.124092
62. Zieliński A, Majkowska-Marzec B. Whether Carbon Nanotubes Are Capable, Promising, and Safe for Their Application in Nervous System Regeneration. Some Critical Remarks and Research Strategies. Coatings. 2022; 12(11): 1643. doi: 10.3390/coatings12111643
63. Elkins M, Jain N, Tükel Ç. The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Current Opinion in Microbiology. 2024; 79: 102473. doi: 10.1016/j.mib.2024.102473
64. Schreiner TG, Schreiner OD, Adam M, et al. The Roles of the Amyloid Beta Monomers in Physiological and Pathological Conditions. Biomedicines. 2023; 11(5): 1411. doi: 10.3390/biomedicines11051411
65. Saramowicz K, Siwecka N, Galita G, et al. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson’s Disease. International Journal of Molecular Sciences. 2023; 25(1): 360. doi: 10.3390/ijms25010360
66. Calabresi P, Mechelli A, Natale G, et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death & Disease. 2023; 14(3). doi: 10.1038/s41419-023-05672-9
67. Bagree G, De Silva O, Liyanage PD, et al. α-synuclein as a promising biomarker for developing diagnostic tools against neurodegenerative synucleionopathy disorders. TrAC Trends in Analytical Chemistry. 2023; 159: 116922. doi: 10.1016/j.trac.2023.116922
68. Chen R, Gu X, Wang X. α-Synuclein in Parkinson’s disease and advances in detection. Clinica Chimica Acta. 2022; 529: 76-86. doi: 10.1016/j.cca.2022.02.006
69. Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. Journal of Pharmaceutical and Biomedical Analysis. 2022; 209: 114479. doi: 10.1016/j.jpba.2021.114479
70. Campuzano S, Pedrero M, Yáñez-Sedeño P, et al. New challenges in point of care electrochemical detection of clinical biomarkers. Sensors and Actuators B: Chemical. 2021; 345: 130349. doi: 10.1016/j.snb.2021.130349
71. Achi F, Attar AM, Ait Lahcen A. Electrochemical nanobiosensors for the detection of cancer biomarkers in real samples: Trends and challenges. TrAC Trends in Analytical Chemistry. 2024; 170: 117423. doi: 10.1016/j.trac.2023.117423
72. Dhara K, Mahapatra DR. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchemical Journal. 2020; 156: 104857. doi: 10.1016/j.microc.2020.104857
73. Wang Y, Li B, Tian T, et al. Advanced on-site and in vitro signal amplification biosensors for biomolecule analysis. TrAC Trends in Analytical Chemistry. 2022; 149: 116565. doi: 10.1016/j.trac.2022.116565
74. Panda P, Pal K, Chakroborty S. Smart advancements of key challenges in graphene-assembly glucose sensor technologies: A mini review. Materials Letters. 2021; 303: 130508. doi: 10.1016/j.matlet.2021.130508
75. Lee GS, Kim JG, Kim JT, et al. 2D Materials Beyond Post‐AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. Advanced Materials. 2023; 36(11). doi: 10.1002/adma.202307689
76. Ates HC, Brunauer A, von Stetten F, et al. Integrated Devices for Non‐Invasive Diagnostics. Advanced Functional Materials. 2021; 31(15). doi: 10.1002/adfm.202010388
77. Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chemical Society Reviews. 2020; 49(21): 7671-7709. doi: 10.1039/d0cs00304b
78. Chang T, Li H, Zhang N, et al. Highly integrated watch for noninvasive continual glucose monitoring. Microsystems & Nanoengineering. 2022; 8(1). doi: 10.1038/s41378-022-00355-5
79. Banerjee R, Gebrekrstos A, Orasugh JT, et al. Nanocarbon-Containing Polymer Composite Foams: A Review of Systems for Applications in Electromagnetic Interference Shielding, Energy Storage, and Piezoresistive Sensors. Industrial & Engineering Chemistry Research. 2023; 62(18): 6807-6842. doi: 10.1021/acs.iecr.3c00089
80. Hao ESJ, Zhang N, Zhu Q, et al. Terahertz Attenuated Total Reflection Spectral Response and Signal Enhancement via Plasmonic Enhanced Sensor for Eye Drop Detection. Sensors. 2023; 23(19): 8290. doi: 10.3390/s23198290
81. Yang L, Wang J, Han L, et al. Effect of H2H management mode on blood sugar control and living ability in patients with schizophrenia and type 2 diabetes mellitus. American Journal of Translational Research. 2023; 15(1): 223-232.
82. Zhao B, Sivasankar VS, Subudhi SK, et al. Printed Carbon Nanotube-Based Humidity Sensors Deployable on Surfaces of Widely Varying Curvatures. ACS Applied Nano Materials. 2023; 6(2): 1459-1474. doi: 10.1021/acsanm.2c05423
83. Demir E, Aydogdu Ozdogan N, Olcer M. Nanostructured electrochemical biosensors for estimation of pharmaceutical drugs. Novel Nanostructured Materials for Electrochemical Bio-Sensing Applications. 2024; 379-428. doi: 10.1016/b978-0-443-15334-1.00014-6
84. Bolla AS, Priefer R. Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020; 14(5): 739-751. doi: 10.1016/j.dsx.2020.05.016
85. Laha S, Rajput A, Laha SS, et al. A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management. Biosensors. 2022; 12(11): 965. doi: 10.3390/bios12110965
86. Chimene D, Alge DL, Gaharwar AK. Two‐Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects. Advanced Materials. 2015; 27(45): 7261-7284. doi: 10.1002/adma.201502422
87. Shahazi R, Saddam AI, Islam MR, et al. Recent progress in Nanomaterial based biosensors for the detection of cancer biomarkers in human fluids. Nano Carbons. 2024; 2(2): 1254. doi: 10.59400/n-c.v2i2.1254
88. Morsink M, Severino P, Luna-Ceron E, et al. Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomaterialia. 2022; 139: 141-156. doi: 10.1016/j.actbio.2021.11.022
89. Gungordu N, Borekci S, Çulpan HC, et al. Effect of Continuous Positive Airway Pressure Therapy on Pro-Brain Natriuretic Peptide, C-Reactive Protein, Homocysteine, and Cardiac Markers in Patients with Obstructive Sleep Apnea. Thoracic Research and Practice. 2023; 24(2): 76-84. doi: 10.5152/thoracrespract.2023.22130
90. Cui Y, Zhang S, Zhou X, et al. Silica nanochannel array on co-electrodeposited graphene-carbon nanotubes 3D composite film for antifouling detection of uric acid in human serum and urine samples. Microchemical Journal. 2023; 190: 108632. doi: 10.1016/j.microc.2023.108632
91. Zhang Q, Liu Y, Yang G, et al. Recent advances in protein hydrogels: From design, structural and functional regulations to healthcare applications. Chemical Engineering Journal. 2023; 451: 138494. doi: 10.1016/j.cej.2022.138494
92. Mani V, Durmus C, Khushaim W, et al. Multiplexed sensing techniques for cardiovascular disease biomarkers - A review. Biosensors and Bioelectronics. 2022; 216: 114680. doi: 10.1016/j.bios.2022.114680
93. John RV, Devasiya T, V.R. N, et al. Cardiovascular biomarkers in body fluids: progress and prospects in optical sensors. Biophysical Reviews. 2022; 14(4): 1023-1050. doi: 10.1007/s12551-022-00990-2
94. Du X, Su X, Zhang W, et al. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Analytical Chemistry. 2021; 94(1): 442-463. doi: 10.1021/acs.analchem.1c04476
95. Majumdar S, Shahazi R, Saddam AI, et al. Carbon nanomaterial-based electrochemical sensor in biomedical application, a comprehensive study. Characterization and Application of Nanomaterials. 2024; 7(1): 4654. doi: 10.24294/can.v7i1.4654
DOI: https://doi.org/10.24294/can9917
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.