Advanced tungsten-containing materials manufacturing from its scrap
Vol 8, Issue 1, 2025
VIEWS - 0 (Abstract) 0 (PDF)
Abstract
We develop a relatively cheap technology of processing a scrap in the form of already used tungsten-containing products (spirals, plates, wires, rods, etc.), as well not conditional tungsten powders. The main stages of the proposed W-scrap recycling method are its dispersing and subsequent dissolution under controlled conditions in hydrogen peroxide aqueous solution resulting in the PTA (PeroxpolyTungstic Acid) formation. The filtered solution, as well as the solid acid obtained by its evaporation, are used to synthesize various tungsten compounds and composites. Good solubility of PTA in water and some other solvents allows preparing homogeneous liquid charges, heat treatment of which yield WC and WC–Co in form of ultradispersed powders. GO (Graphene Oxide) and PTA composite is obtained and its phase transition in vacuum and reducing atmosphere (H2) is studied. By vacuum-thermal exfoliation of GO–PTA composite at 170–500℃ the rGO (reduced GO) and WO2.9 tungsten oxide are obtained, and at 700℃—rGO–WO2 composite. WC, W2C and WC–Co are obtained from PTA at high temperature (900–1000℃). By reducing PTA in a hydrogen atmosphere, metallic tungsten powder is obtained, which was used to obtain sandwich composites with boron carbide B4C, W/B4C, and W/(B4C–W), as neutron shield materials. Composites of sandwich morphology are formed by SPS (Spark-Plasma Sintering) method.
Keywords
Full Text:
PDFReferences
1. MTS (Midwest Tungsten Serwise). Tungsten and Costs. Available online: https://www.tungsten.com/asset/61bbda640726d (accessed on 1 September 2024).
2. Yang X. Beneficiation studies of tungsten ores—A review. Minerals Engineering. 2018; 125: 111-119. doi: 10.1016/j.mineng.2018.06.001
3. Kumar R, Kariminejad A, Antonov M, et al. Progress in sustainable recycling and circular economy of tungsten carbide hard metal scraps for Industry 5.0 and onwards. Sustainability. 2023; 15(16): 12249. doi: 10.3390/su151612249
4. ITIA (International Tungsten Industry Association). Tungsten Processing. Available online: https://www.itia.info/tungstenprocessing.html (accessed on 1 September 2024).
5. Lin JC, Lin JY, Lee SL. Process for recovering tungsten carbide from cemented tungsten carbide scraps by selective electrolysis. Available online: https://patents.google.com/patent/US5384016A/en (accessed on 1 September 2024).
6. Katiyar PK, Randhawa NS, Hait J, et al. Anodic Dissolution behaviour of Tungsten Carbide scraps in ammoniacal media. Advanced Materials Research. 2013; 828: 11-20. doi: 10.4028/www.scientific.net/amr.828.11
7. Furberg A, Arvidsson R, Molander S. Environmental life cycle assessment of cemented carbide (WC-Co) production. Journal of Cleaner Production. 2019; 209: 1126-1138. doi: 10.1016/j.jclepro.2018.10.272
8. Lassner E, Schubert WD. Tungsten. Springer US; 1999. doi: 10.1007/978-1-4615-4907-9
9. Schubert WD, Zeiler B. Recycling of Tungsten. The Technology—History, State of the Art and Peculiarities. Available online: https://www.itia.info/assets/files/newsletters/Newsletter_2019_08.pdf (accessed on 1 September 2024).
10. Shedd KB. Tungsten recycling in the United States in 2000. USGS; 2005.
11. Xia X, Zhang G, Guan W, et al. A novel method for preparing tungsten and molybdenum peroxy complex solution and its application to tungsten-molybdenum separation. Hydrometallurgy. 2023; 215: 105974. doi: 10.1016/j.hydromet.2022.105974
12. Asher A, Borukhin L, Ruhr M. Applications of chemically recycled tungsten powder in heavy metal products. In: Tungsten and Refractory Metals. Princeton, Metal Powder Industries Federation; 1994. pp. 337-344.
13. Berrebi G, Dufresne P, Jacquier Y. Recycling of spent hydroprocessing catalysts: EURECAT technology. Resources, Conservation and Recycling. 1994; 10(1–2), 1-9. doi: 10.1016/0921-3449(94)90032-9
14. Kurylak W, Retegan T, Bru K, et al. State of the Art on the Recovery of Refractory Metals from Urban Mines. Available online: https://prometia.eu/wp-content/uploads/2020/12/MSP-REFRAM-D4.2-State-of-the-art-on-the-recovery-of-refractory-metals-from-urban-mines.pdf (accessed on 1 September 2024).
15. Tsagareishvili O, Chkhartishvili L, Matcharashvili M, et al. Boron and tungsten carbides based and related nanodispersed composites—A review. Characterization and Application of Nanomaterials. 2024; 7(2): 5454. doi: 10.24294/can.v7i2.5454
16. Murau PC. Dissolution of tungsten by hydrogen peroxide. Analytical Chemistry. 1961; 33(8): 1125-1126. doi: 10.1021/ac60176a021
17. Zhang W, Li J, Zhao Z, et al. Separation of W and Mo from their peroxoacids solutions by thermal decomposition. Transactions of Nonferrous Metals Society of China. 2016; 26(10): 2731-2737. doi: 10.1016/S1003-6326(16)64402-3
18. Kudo T, Okamoto H, Matsumoto K, et al. Peroxopolytungstic acids synthesized by direct reaction of tungsten or tungsten carbide with hydrogen peroxide. Inorganica Chimica Acta. 1986; 111(2): L27-L28. https://doi.org/10.1016/S0020-1693(00)84626-5
19. Kim H, Lee J, Sohn I, et al. Preparation of tungsten metal film by spin coating method. Korea-Australia Rheology Journal. 2002; 14(2): 71-76.
20. Tsuyumoto I. Facile synthesis of nanocrystalline hexagonal tungsten trioxide from metallic tungsten powder and hydrogen peroxide. Journal of the American Ceramic Society. 2017; 101(2): 509-514. doi: 10.1111/jace.15250
21. Jana RK, Kumar V, Saha AK, et al. Processing of tungsten alloy scrap for the recovery of tungsten metal. In: Proceedings of the National Seminar on Environmental & Waste Management in Metallurgical Industries. National Metallurgical Laboratory-Jamshedpur; 1996. pp. 94-98.
22. Masoudi A, Abbaszadeh H. Tungsten direct recovery from W-Cu alloy scrap by selective digestion via FeCl3 aqueous solution. American Journal of Materials Science and Engineering. 2013; 1(1): 1-5.
23. Das N, Chowdhury S, Purkayastha RND. Peroxo–tungstate(VI) complexes: Syntheses, characterization, reactivity, and DFT studies. Monatshefte für Chemie—Chemical Monthly. 2019; 150(7): 1255-1266. doi: 10.1007/s00706-019-02435-1
24. Dzyazko YS, Volfkovich YM, Chaban MO. Composites containing inorganic ion exchangers and graphene oxide: Hydrophilic–hydrophobic and sorption properties (Review). Cham, Springer; 2021. pp. 93-110.
25. Fu C, Foo C, Lee PS. One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochimica Acta. 2014; 117: 139-144. doi: 10.1016/j.electacta.2013.11.123
26. Chang X, Sun S, Dong L, et al. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochimica Acta. 2014; 129: 40-46. doi: 10.1016/j.electacta.2014.02.065
27. Chang X, Dong L, Yin Y, et al. A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets. RSC Advances. 2013; 3(35): 15005. doi: 10.1039/c3ra41109e
28. An X, Yu JC, Wang Y, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. Journal of Materials Chemistry. 2012; 22(17): 8525. doi: 10.1039/c2jm16709c
29. Makatsaria S, Kekutia S, Markhulia J, et al. Magnetic properties of nanopowder h-BN doped with Fe and Fe3O4 nanoclusters. Nano Studies. 2021–2022; 21/2: 287-292. doi: 10.52340/ns.2022.08
30. Chkhartishvili L, Chedia R, Tsagareishvili O, et al. Preparation of neutron-capturing boron-containing nanosystems. In: Proceedings of the 9th International Conference and Exhibition on Advanced and Nano Materials; 2022; Victoria, IAEMM. pp. 1-15.
31. Chkhartishvili L, Makatsaria S, Gogolidze N, et al. Obtaining boron carbide and nitride matrix nanocomposites for neutron-shielding and therapy applications. Condensed Matter. 2023; 8(4): 92. doi: 10.3390/condmat8040092
32. Chkhartishvili L, Makatsaria S, Barbakadze N, et al. Synthesis of 2D-material(G,GO,rGO,h-BN)–magnetic(Fe,Fe3O4) nanocomposites. Nano Hybrids and Composites. 2024; 43: 23-37. doi: 10.4028/p-momlh1
33. Nadaraia L, Dundua T, Gamkrelidze N, et al. Graphite foil waste to graphene: New carbon precursors for synthesis of graphene and its oxides. Key Engineering Materials. 2021; 891: 68-74. doi: 10.4028/www.scientific.net/kem.891.68
34. Nadaraia L, Jalabadze N, Khundadze L, et al. Effects of graphene on morphology, fracture toughness, and electrical conductivity of titanium dioxide. Diamond and Related Materials. 2021; 114: 108319. doi: 10.1016/j.diamond.2021.108319
35. Dundua T. Preparation of graphene oxide composites containing nanometals and oxides from graphite foil wastes and study of their biocidal activity. Nano Studies. 2021–2022; 21/22: 91-110. doi: 10.52340/ns.2022.06
36. Barbakadze N, Sarajishvili K, Chedia R, et al. Obtaining of ultrafine powders of some boron carbide based nanocomposites using liquid precursors. Nanotechnology Perceptions. 2019; 15(3): 243-256. doi: 10.4024/N27BA19A.ntp.15.03
37. Mikeladze A, Tsagareishvili O, Chkhartishvili L, Chedia R. Obtaining of some boron-containing and related nanocrystalline systems from solutions and suspensions. Available online: https://www.researchgate.net/publication/334964450_Obtaining_of_Some_Boron-Containing_and_Related_Nanocrystalline_Systems_from_Solutions_and_Suspensions (accessed on 1 September 2024).
38. Chkhartishvili L, Mikeladze A, Tsagareishvili O, et al. Advanced boron carbide matrix nanocomposites obtained from liquid-charge: Focused review. Condensed Matter. 2023; 8(2): 37. doi: 10.3390/condmat8020037
39. Barbakadze NG, Tsitsishvili VG, Korkia TV, et al. Synthesis of graphene oxide and reduced graphene oxide from graphite foil industrial wastes. European Chemical Bulletin. 2019; 7(11-12): 329. doi: 10.17628/ecb.2018.7.329-333
40. Peng Y, Wang H, Zhao C, et al. Nanocrystalline WC-Co composite with ultrahigh hardness and toughness. Composites Part B: Engineering. 2020; 197: 108161. doi: 10.1016/j.compositesb.2020.108161
41. Shawgi N, Li S, Wang S, et al. Towards a large-scale production of boron carbide nano particles from poly (vinyl alcohol) and boric acid by a solid-state reaction-pyrolysis process (SRPP). Ceramics International. 2018; 44(1): 774-778. doi: 10.1016/j.ceramint.2017.09.246
42. Nabakhtiani G, Chkhartishvili L, Gigineishvili A, et al. Dekanosidze. Attenuation of gamma-radiation concomitant neutron-absorption in boron-tungsten composite shields. Nano Studies. 2013; 8: 259-266.
43. Evans BR, Lian J, Ji W. Evaluation of shielding performance for newly developed composite materials. Annals of Nuclear Energy. 2018; 116: 1-9. doi: 10.1016/j.anucene.2018.01.022
44. Chkhartishvili L. Boron-contained nanostructured materials for neutron-shields. Springer Science; 2018. pp. 133-154.
45. Singla G, Singh K, Pandey OP. Structural and thermal properties of in-situ reduced WO3 to W powder. Powder Technology. 2013; 237: 9-13. doi: 10.1016/j.powtec.2013.01.008
46. Wang Y, Long BF, Liu CY, et al. Evolution of reduction process from tungsten oxide to ultrafine tungsten powder via hydrogen. High Temperature Materials and Processes. 2021; 40(1): 171-177. doi: 10.1515/htmp-2021-0017
47. Dippel AC, Schneller T, Lehmann W, et al. Tungsten coatings by chemical solution deposition for ceramic electrodes in fluorescent tubes. Journal of Materials Chemistry. 2008; 18(29): 3501. doi: 10.1039/b802686f
48. Cao P, Cao JP, Cao JH. Boron carbide ceramic metallization preparation method. Available online: https://eureka.patsnap.com/pdfnew/ (accessed on 1 September 2024).
49. Ozer SC, Buyuk B, Tugrul AB, et al. Gamma and neutron shielding behavior of spark-plasma sintered boron carbide-tungsten based composites. Cham, Springer International Publishing; 2016. pp. 449-456.
50. Sugiyama S, Taimatsu H. Preparation of WC-WB-W2B composites from B4C-W-WC powders and their mechanical properties. Materials Transactions. 2002; 43(5): 1197-1201.
51. Martini F. Preparation and Characterization of Uranium and Tungsten Borides for Applications in the Nuclear Industry [PhD Theses]. Bangor University; 2023.
DOI: https://doi.org/10.24294/can9274
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Levan Chkhartishvili, Natia Barbakadze, Otar Tsagareishvili, Archil Mikeladze, Tamaz Batsikadze, Manana Buzariashvili, Tamar Dgebuadze, Roin Chedia
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.