Nanoparticles’ classification, synthesis, characterization and applications—A review
Vol 8, Issue 1, 2025
VIEWS - 41 (Abstract) 6 (PDF)
Abstract
This review provides an overview of the importance of nanoparticles in various fields of science, their classification, synthesis, reinforcements, and applications in numerous areas of interest. Normally nanoparticles are particles having a size of 100 nm or less that would be included in the larger category of nanoparticles. Generally, these materials are either 0-D, 1-D, 2-D, or 3-D. They are classified into groups based on their composition like being organic and inorganic, shapes, and sizes. These nanomaterials are synthesized with the help of top-down bottom and bottom-up methods. In case of plant-based synthesis i.e., the synthesis using plant extracts is non-toxic, making plants the best choice for producing nanoparticles. Several physicochemical characterization techniques are available such as ultraviolet spectrophotometry, Fourier transform infrared spectroscopy, the atomic force microscopy, the scanning electron microscopy, the vibrating specimen magnetometer, the superconducting complex optical device, the energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy to investigate the nanomaterials. In the meanwhile, there are some challenges associated with the use of nanoparticles, which need to be addressed for the sustainable environment.
Keywords
Full Text:
PDFReferences
1. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019; 12(7): 908-931. doi: 10.1016/j.arabjc.2017.05.011
2. Hosseinkhani H. Biomedical Engineering: Materials, Technology, and Applications. John Wiley & Sons; 2022.
3. Hosseinkhani H. Nanomaterials in advanced medicine. Vch Verlagsgesellschaft Mbh; 2019.
4. He W, Hosseinkhani H, Mohammadinejad R, et al. Polymeric nanoparticles for therapy and imaging. Polymers for Advanced Technologies. 2014; 25(11): 1216-1225. doi: 10.1002/pat.3381
5. Farooq I, Islam M, Danish M, et al. Synergistic effects of Li-based ferrite and graphene oxide in microwave absorption applications. Synthetic Metals. 2024; 307: 117674. doi: 10.1016/j.synthmet.2024.117674
6. Perveen R, Islam MU, Danish M, et al. Innovative Nanostructuring of Li–Zn ferrite/graphene composites with tunable properties. Ceramics International. 2024; 50(20): 39564-39573. doi: 10.1016/j.ceramint.2024.07.335
7. Vollath DJEE, Journal M. Nanomaterials an introduction to synthesis, properties and application. Wiley-VCH; 2008.
8. Harish V, Ansari MM, Tewari D, et al. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials. 2022; 12(18): 3226. doi: 10.3390/nano12183226
9. Harish V, Tewari D, Gaur M, et al. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials. 2022; 12(3): 457. doi: 10.3390/nano12030457
10. Rizwan M, Singh M, Mitra CK, et al. Ecofriendly Application of Nanomaterials: Nanobioremediation. Journal of Nanoparticles. 2014; 2014: 1-7. doi: 10.1155/2014/431787
11. Barhoum A, García-Betancourt ML, Jeevanandam J, et al. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials. 2022; 12(2): 177. doi: 10.3390/nano12020177
12. Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology. 2018; 9: 1050-1074. doi: 10.3762/bjnano.9.98
13. Laad M, Jatti VKS. Titanium oxide nanoparticles as additives in engine oil. Journal of King Saud University - Engineering Sciences. 2018; 30(2): 116-122. doi: 10.1016/j.jksues.2016.01.008
14. Salavati-Niasari M, Davar F, Mir N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron. 2008; 27(17): 3514-3518. doi: 10.1016/j.poly.2008.08.020
15. Bhaviripudi S, Mile E, Steiner SA, CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts. Journal of the American Chemical Society. 2007; 129(6): 1516-1517. doi: 10.1021/ja0673332
16. Deng J, Ding QM, Jia MX, et al. Biosafety risk assessment of nanoparticles: Evidence from food case studies. Environmental Pollution. 2021; 275: 116662. doi: 10.1016/j.envpol.2021.116662
17. Das D, Roy A. Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts. Applied Surface Science. 2020; 515: 146043. doi: 10.1016/j.apsusc.2020.146043
18. Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience. 2020; 10(5): 1369-1378. doi: 10.1007/s13204-020-01318-w
19. Obradović V, Simić D, Zrilić M, et al. Novel Hybrid Nanostructures of Carbon Nanotube/Fullerene-like Tungsten Disulfide as Reinforcement for Aramid Fabric Composites. Fibers and Polymers. 2021; 22(2): 528-539. doi: 10.1007/s12221-021-0278-5
20. Mann S, Burkett SL, Davis SA, et al. Sol−Gel Synthesis of Organized Matter. Chemistry of Materials. 1997; 9(11): 2300-2310. doi: 10.1021/cm970274u
21. Niederberger M, Garnweitner G. Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. Chemistry – A European Journal. 2006; 12(28): 7282-7302. doi: 10.1002/chem.200600313
22. Kim J, Kim BK, Park K. Electrodeposition of Silver Nanoparticles on Indium-Doped Tin Oxide Using Hydrogel Electrolyte for Hydrogen Peroxide Sensing. Nanomaterials. 2022; 13(1): 48. doi: 10.3390/nano13010048
23. Hachem K, Ansari MJ, Saleh RO, et al. Methods of Chemical Synthesis in the Synthesis of Nanomaterial and Nanoparticles by the Chemical Deposition Method: A Review. BioNanoScience. 2022; 12(3): 1032-1057. doi: 10.1007/s12668-022-00996-w
24. Mohammadi S, Harvey A, Boodhoo KVK. Synthesis of TiO2 nanoparticles in a spinning disc reactor. Chemical Engineering Journal. 2014; 258: 171-184. doi: 10.1016/j.cej.2014.07.042
25. Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C. 2017; 80: 771-784. doi: 10.1016/j.msec.2017.06.004
26. Bachmatiuk A, Börrnert F, Grobosch M, et al. Investigating the Graphitization Mechanism of SiO2 Nanoparticles in Chemical Vapor Deposition. ACS Nano. 2009; 3(12): 4098-4104. doi: 10.1021/nn9009278
27. Kammler HK, Mädler L, Pratsinis SEJCE, Engineering‐Biotechnology TICPEP. Flame synthesis of nanoparticles. 2001; 24(6): 583-96.
28. D’Amato R, Falconieri M, Gagliardi S, et al. Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications. Journal of Analytical and Applied Pyrolysis. 2013; 104: 461-469. doi: 10.1016/j.jaap.2013.05.026
29. Tseomashko NE, Rai M, Vasil’kov AY. New hybrid materials for wound cover dressings. Biopolymer-Based Nano Films. Published online 2021: 203-245. doi: 10.1016/b978-0-12-823381-8.00007-7
30. Alghuthaymi MA, Almoammar H, Rai M, et al. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment. 2015; 29(2): 221-236. doi: 10.1080/13102818.2015.1008194
31. Sengupta D, Chen SH, Michael A, et al. Single and bundled carbon nanofibers as ultralightweight and flexible piezoresistive sensors. npj Flexible Electronics. 2020; 4(1). doi: 10.1038/s41528-020-0072-2
32. Fawole OG, Cai XM, Nikolova I, et al. Self-consistent estimates of emission factors of carboncontaining pollutants from a typical gas flare. Ife Journal of Science. 2020; 22(2): 135-149. doi: 10.4314/ijs.v22i2.13
33. Anwar SHJRRJMS. A brief review on nanoparticles: types of platforms, biological synthesis and applications. Research and Review. 2018; 6: 109-16.
34. Shah P, Gavrin A. Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging. Journal of Magnetism and Magnetic Materials. 2006; 301(1): 118-123. doi: 10.1016/j.jmmm.2005.06.023
35. Kolahalam LA, Kasi Viswanath IV, Diwakar BS, et al. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings. 2019; 18: 2182-2190. doi: 10.1016/j.matpr.2019.07.371
36. Chandrakasan G, Toledano Ayala M, García Trejo JF, et al. Mapping and distribution of speciation changes of metals from nanoparticles in environmental matrices using synchrotron radiation techniques. Environmental Nanotechnology, Monitoring & Management. 2021; 16: 100491. doi: 10.1016/j.enmm.2021.100491
37. Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules. 2023; 28(2): 661. doi: 10.3390/molecules28020661
38. Khan Y, Sadia H, Ali Shah SZ, et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts. 2022; 12(11): 1386. doi: 10.3390/catal12111386
39. Ahmad F, Zahid M, Jamil H, et al. Advances in graphene-based electrode materials for high-performance supercapacitors: A review. Journal of Energy Storage. 2023; 72: 108731. doi: 10.1016/j.est.2023.108731
40. Qayyum A, Rehman MO ur, Ahmad F, et al. Performance optimization of Nd-doped LaNiO3 as an electrode material in supercapacitors. Solid State Ionics. 2023; 395: 116227. doi: 10.1016/j.ssi.2023.116227
41. Ahmad F, Khan MA, Waqas U, et al. Elucidating an efficient super-capacitive response of a Sr2Ni2O5/rGO composite as an electrode material in supercapacitors. RSC Advances. 2023; 13(36): 25316-25326. doi: 10.1039/d3ra03140c
42. Ahmad F, Shahzad A, Danish M, et al. Recent developments in transition metal oxide-based electrode composites for supercapacitor applications. Journal of Energy Storage. 2024; 81: 110430. doi: 10.1016/j.est.2024.110430
43. Lakhani P, Kane S, Srivastava H, et al. Sustainable approach for the synthesis of chiral β-aminoketones using an encapsulated chiral Zn(ii)–salen complex. RSC Sustainability. 2023; 1(7): 1773-1782. doi: 10.1039/d3su00210a
44. Lakhani P, Modi CK. Montmorillonite-Silica-Graphene oxide composite incorporating with chiral thiourea for the Strecker reaction. Molecular Catalysis. 2024; 559: 114080. doi: 10.1016/j.mcat.2024.114080
45. Mpongwana N, Rathilal S. A Review of the Techno-Economic Feasibility of Nanoparticle Application for Wastewater Treatment. Water. 2022; 14(10): 1550. doi: 10.3390/w14101550
46. Jedla MR, Koneru B, Franco A, et al. Recent Developments in Nanomaterials Based Adsorbents for Water Purification Techniques. Biointerface Research in Applied Chemistry. 2021; 12(5): 5821-5835. doi: 10.33263/briac125.58215835
47. Bhanderi D, Lakhani P, Sharma A, et al. Efficient Visible Light Active Photocatalyst: Magnesium Oxide-Doped Graphitic Carbon Nitride for the Knoevenagel Condensation Reaction. ACS Applied Engineering Materials. 2023; 1(10): 2752-2764. doi: 10.1021/acsaenm.3c00463
48. Moharana S, Rout L, Sagadevan S, et al. Carbon Nanotube-Polymer Nanocomposites. Springer Nature Singapore; 2024. doi: 10.1007/978-981-97-6329-0
49. Yang X, Zhao R, Zhan H, et al. Modified Titanium dioxide-based photocatalysts for water treatment: Mini review. Environmental Functional Materials. 2024; 3(1): 1-12. doi: 10.1016/j.efmat.2024.07.002
50. Hosseinkhani H, Domb AJ. Biodegradable polymers in gene‐silencing technology. Polymers for Advanced Technologies. 2019; 30(10): 2647-2655. doi: 10.1002/pat.4713
51. Abedini F, Ebrahimi M, Roozbehani AH, et al. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polymers for Advanced Technologies. 2018; 29(10): 2564-73.
52. Ghadiri M, Vasheghani‐Farahani E, et al. Transferrin‐conjugated magnetic dextran‐spermine nanoparticles for targeted drug transport across blood‐brain barrier. Journal of Biomedical Materials Research Part A. 2017; 105(10): 2851-64.
53. Farokhi M, Mottaghitalab F, Shokrgozar MA, et al. Importance of dual delivery systems for bone tissue engineering. Journal of Controlled Release. 2016; 225: 152-69.
54. Zhao Z, Li Y, Xie M-B. Silk fibroin-based nanoparticles for drug delivery. International journal of molecular sciences. 2015; 16(3): 4880-903.
55. Li Z, Sheikholeslami M, Shafee A, et al. Solidification process through a solar energy storage enclosure using various sizes of Al2O3 nanoparticles. Journal of Molecular Liquids. 2019; 275: 941-954. doi: 10.1016/j.molliq.2018.11.129
56. Huang X, Zhang J, Peng K, et al. Functional magnetic nanoparticles for enhancing ultrafiltration of waste cutting emulsions by significantly increasing flux and reducing membrane fouling. Journal of Membrane Science. 2019; 573: 73-84. doi: 10.1016/j.memsci.2018.11.074
57. Lakhani P, Bhanderi D, Modi CK. Nanocatalysis: recent progress, mechanistic insights, and diverse applications. Journal of Nanoparticle Research. 2024; 26(7): 148.
58. Lakhani P, Bhanderi D, Modi CK. Silica-supported ionic liquids as versatile catalysts: A case study. Journal of Molecular Liquids. 2024; 408: 125306. doi: 10.1016/j.molliq.2024.125306
59. Parmar R, Lakhani P, Bhanderi D, et al. Harnessing bimetallic oxide nanoparticles on ionic liquid functionalized silica for enhanced catalytic performance. Journal of Organometallic Chemistry. 2024; 1008: 123073. doi: 10.1016/j.jorganchem.2024.123073
60. Lakhani P, Modi CK. Shaping enantiochemistry: recent advances in enantioselective reactions via heterogeneous chiral catalysis. Molecular Catalysis. 2023; 548: 113429.
61. Lakhani P, Chodvadiya D, Jha PK, et al. DFT stimulation and experimental insights of chiral Cu (ii)–salen scaffold within the pocket of MWW-zeolite and its catalytic study. Physical Chemistry Chemical Physics. 2023; 25(20): 14374-86.
62. Lakhani P, Modi CK. Asymmetric hydrogenation using a covalently immobilized Ru-BINOL-AP@ MSNs catalyst. New Journal of Chemistry. 2023; 47(18): 8767-75.
63. Lakhani P, Modi CK. Spick-and-span protocol for designing of silica-supported enantioselective organocatalyst for the asymmetric aldol reaction. Molecular Catalysis. 2022; 525: 112359.
64. Dutta S, Parida S, Maiti C, et al. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. Journal of Colloid and Interface Science. 2016; 467: 70-80.
65. Li X, You J, Li J, et al. Progress of Copper‐based Nanocatalysts in Advanced Oxidation Degraded Organic Pollutants. ChemCatChem. 2024;16(6): e202301108.
66. Rasheed T, Shafi S, Anwar MT, et al. Revisiting photo and electro-catalytic modalities for sustainable conversion of CO2. Applied Catalysis A: General. 2021; 623: 118248.
67. Xie X, Nie H, Zhou Y, et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nature Communications. 2019; 10(1). doi: 10.1038/s41467-019-13316-w
68. Anwar MT, Yan X, Shen S, et al. Enhanced durability of Pt electrocatalyst with tantalum doped titania as catalyst support. International Journal of Hydrogen Energy. 2017; 42(52): 30750-9.
69. Kantipudi S, Sunkara JR, Rallabhandi M, et al. Enhanced wound healing activity of Ag–ZnO composite NPs in Wistar Albino rats. IET Nanobiotechnology. 2018; 12(4): 473-478. doi: 10.1049/iet-nbt.2017.0087
70. Waqas U, Salman MU, Khan MA, et al. Rapid switching capability and efficient magnetoelectric coupling mediated by effective interfacial interactions in Bi0·9La0·1FeO3/SrCoO3 bi-phase composites for ultra-sensitive pulsating devices. Journal of Materials Research and Technology. 2024; 29: 2971-9.
71. Danish M, Islam M ul, Ahmad F, et al. Synthesis of M-type hexaferrite reinforced graphene oxide composites for electromagnetic interference shielding. Journal of Physics and Chemistry of Solids. 2024; 185: 111783. doi: 10.1016/j.jpcs.2023.111783
72. Kefeni KK, Msagati TAM, Mamba BB. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Materials Science and Engineering: B. 2017; 215: 37-55. doi: 10.1016/j.mseb.2016.11.002
73. Kadam RH, Desai K, Shinde VS, et al. Influence of Gd3+ ion substitution on the MnCrFeO4 for their nanoparticle shape formation and magnetic properties. Journal of Alloys and Compounds. 2016; 657: 487-494. doi: 10.1016/j.jallcom.2015.10.164
74. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances. 2021; 2(6): 1821-1871. doi: 10.1039/d0ma00807a
75. Domb AJ, Sharifzadeh G, Nahum V, et al. Safety Evaluation of Nanotechnology Products. Pharmaceutics. 2021; 13(10): 1615. doi: 10.3390/pharmaceutics13101615
DOI: https://doi.org/10.24294/can8899
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Sharf U. Din Awan, Muhammad Tuoqeer Anwar, Hasan Izhar Khan, Muhammad Rehman Asghar, Muhammad Rafi Raza, Naveed Husnain, Muzamil Hussain, Tahir Rasheed
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.