Nano-composites and their applications: A review
Vol 3, Issue 1, 2020
VIEWS - 2982 (Abstract) 803 (PDF)
Abstract
Nanocomposites are high performance materials which reveal rare properties. Nanocomposites have an estimated annual growth rate of 25% and fastest demand to be in engineering plastics and elastomers. Their prospective is so prominent that they are valuable in numerous areas ranging from packaging to biomedical applications. In this review, the various types of matrix nanocomposites are discussed highlighting the need for these materials, their processing approaches and some recent results on structure, properties and potential applications. Perspectives include need for such future materials and other interesting applications. Being environmentally friendly, applications of nanocomposites propose new technology and business opportunities for several sectors of the aerospace, automotive, electronics and biotechnology industries.
Keywords
Full Text:
PDFReferences
1. Dalton AB, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres — These extraordinary composite fibres can be woven into electronic textiles. Nature 2003; 423(6941): 703–703.
2. Roy R, Roy RA, Roy DM. Alternative perspectives on “quasi-crystallinity”: Non-uniformity and nanocomposites. Materials Letters 1986; 4(8-9): 323–328.
3. Ounaies Z, Park C, Wise KE, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology 2003; 63(11): 1637–1646.
4. Schmidt D, Shah D, Giannelis EP. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science 2002; 6(3): 205–212.
5. Gleiter H. Materials with ultrafine microstructures: Retrospectives and perspectives. Nanostructured Materials 1992; 1(1): 1–19.
6. Iijima S. Helical microtubes of graphitic carbon. Nature 1991; 354(6348): 56–58.
7. Braun T, Schubert A, Sindelys Z. Nanoscience and nanotechnology on the balance. Scientometrics 1997; 38(2): 321–325.
8. Kamigaito O. What can be improved by nanometer composites? Journal of Japan Society of Powder Metalurgy 1991; 38(3): 315–321.
9. Biercuk MJ, Llaguno MC, Radosvljevic M, et al. Carbon nanotube composites for thermal management. Applied Physics Letters 2002; 80(15): 2767–2769.
10. Weisenberger MC, Grulke EA, Jacques D, et al. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. Journal of Nanoscience and Nanotechnology 2003; 3(6): 535–539.
11. Choa YH, Yang JK, Kim BH, et al. Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. Journal of Magnetism and Magnetic Materials 2003; 266(1-2): 12–19.
12. Wypych F, Seefeld N, Denicolo I. Preparation of nanocomposites based on the encapsulation of conducting polymers into 2H-MoS2 and 1T-TiS2. Quimica Nova 1997; 20(4): 356–360.
13. Aruna ST, Rajam KS. Synthesis, characterisation and properties of Ni/PSZ and Ni/YSZ nanocomposites. Scripta Materialia 2003; 48(5): 507–512.
14. Giannelis EP. Polymer layered silicate nanocomposites. Advanced Materials 1996; 8(1): 29–35.
15. Sternitzke M. Review: Structural ceramic nanocomposites. Journal of the European Ceramic Society 1997; 17(9): 1061–1082.
16. Peigney A, Laurent CH, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceramic International 2000; 26(6): 677–683.
17. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Materials Science & Engineering 2000; 28(1-2): 1–63.
18. Gangopadhyay R, De A. Conducting polymer nanocomposites: A brief overview. Chemistry of Materials 2000; 12(7): 608–622.
19. Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, et al. An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability 2005; 88(2): 234–250.
20. Thostenson ET, Li C, Chou TW. Nanocomposites in context. Composites Science and Technology 2005; 65(3-4): 491–516.
21. Jordan J, Jacob KI, Tannenbaum R, et al. Experimental trends in polymer nanocomposites — A review. Materials Science and Engineering: A 2005; 393(1-2): 1–11.
22. Choi SM, Awaji H. Nanocomposites — A new material design concept. Science and Technology of Advanced Materials 2005; 6(1): 2–10.
23. Xie X, Mai YW, Zhou X. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science & Engineering: R 2005; 49(4): 89–112.
24. Ray SS, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science 2005; 50(8): 962–1079.
25. Jitendra KP, Pratheep KA, Manjusri M, et al, Recent advances in biodegradable nanocomposites. Journal of Nanoscience and Nanotechnology 2005; 5(4): 497–526.
26. Awaji H, Choi SM, Yagi E. Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mechanics of Materials 2002; 34(7): 411–422.
27. Niihara K. New design concept of structural ceramics — Ceramic nanocomposite. Journal of the Ceramic Society of Japan 1991; 99(1154): 974–982.
28. Nakahira A, Niihara K. Strctural ceramic nanocomposites by sintering method: Role of nano-size particles [PhD thesis]. Osaka: Osaka University; 1991. p. 404–417.
29. Chang JH, An YU. Nanocomposites of polyurethane with various organoclays: Thermomechanical properties, morphology, and gas permeability. Journal of Polymer Science Part B Polymer Physics 2002; 40(7): 670–677.
30. Zavyalov SA, Pivkina AN, Schoonman J. Formation and characterization of metal-polymer nanostructured composites. Solid State Ionics 2002; 147(3-4): 415–419.
31. Thompson CM, Herring HM, Gates TS, et al. Preparation and characterization of metal oxide/polyimide nanocomposites. Composites Science and Technology 2003; 63(11): 1591–1598.
32. Liu TX, Phang IY, Shen L, et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004; 37(19): 7214–7222.
33. Shah MA, Sheikh NA, Najar KA, et al. Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating system. Bulletin of Materials Science 2016; 39(7): 1753–1761.
34. Ogawa M, Kuroda K. Preparation of inorganic-organic nanocomposites through intercalation of organo-ammonium ions into layered silicates. Bulletin of the Chemical Society of Japan 1997; 70(11): 2593–618.
35. Kojima Y, Usuki A, Kawasumi M, et al. Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research 1993; 8(5): 1185–1189.
36. Stearns LC, Zhao J, Harmer MP. Processing and microstructure development in Al2O3-SiC ‘nanocomposites’. Journal of the European Ceramic Society 1992; 10(6): 473–477.
37. Borsa CE, Brook RJ. Fabrication of Al2O3/SiC nano-composites using a polymeric precursor for SiC. In: Hausner H, Messing GL, Horano S (editors). Proceedings of the International Conference of Ceramic Processing Science and Technology; 1994 Sept. 11-14; Friedrichshafen. Westerville, Germany: The American Ceramic Society; 1995. p. 653–658.
38. Riedel R, Strecker K, Petzow G. In situ polysilane-derived silicon carbide particulates dispersed in silicon nitride composite. Journal of the American Ceramic Society 1989; 72(11): 2071–2077.
39. Riedel R, Seher M, Becker G. Sintering of amorphous polymer-derived Si, N and C containing com- posite powders. Journal of the European Ceramic Society 1989; 5(2): 113–122.
40. Din SH, Shah MA, Sheikh NA. Tribology in industry effect of CVD-diamond on the tribological and mechanical performance of Titanium Alloy (Ti6Al4- V). Tribology in Industry 2016; 38(4): 530–542.
41. Vorotilov KA, Yanovskaya MI, Turevskaya EP, et al, Sol-gel derived ferroelectric thin films: Avenues for control of microstructural and electric properties. Journal of Sol-Gel Science and Technology 1999; 16(1-2): 109–118.
42. Hench LL, West JK. The sol-gel process. Chemical Review 1990; 90(1): 33–72.
43. Ennas G, Mei A, Musinu A, et al. Sol-gel preparation and characterization of Ni-SiO2 nanocomposites. Journal of Non-Crystalline Solids 1998; 232-234: 587–593.
44. Sen S, Choudharya RNP, Pramanik P. Synthesis and characterization of nanostructured ferroelectric compounds. Materials Letters 2004; 58(27-28): 3486–3490.
45. Viart N, Richard-Plouet M, Muller D, et al. Synthesis and characterization of Co/ZnO nanocomposites: Towards new perspectives offered by metal/piezoelectric composite materials. Thin Solid Films 2003; 437(1-2): 1–9.
46. Kundu TK, Mukherjee M, Chakravorty D, et al. Growth of nano-α-Fe2O3 in a titania matrix by the sol-gel route. Journal of Matererials Science 1998; 33(7): 1759–1763.
47. Baiju KV, Sibu CP, Rajesh K, et al. An aqueous sol-gel route to synthesize nanosized lanthana-doped titania having an increased anatase phase stability for photocatalytic application. Materials Chemistry and Physics 2005; 90(1): 123–127.
48. Ananthakumar S, Prabhakaran K, Hareesh US, et al. Gel casting process for Al2O3-SiC nanocompositees and its creep characteristics. Materials Chemistry and Physics 2004; 85(1): 151–157.
49. Sivakumar S, Sibu CP, Mukundan P, et al. Nanoporous titania-alumina mixed oxides — An alkoxide free sol-gel synthesis. Materials Letters 2004; 58(21): 2664–2669.
50. Warrier KGK, Anilkumar GM. Densification of mullite-SiC nanocomposite sol-gel precursors by pressureless sintering. Materials Chemistry and Physics 2001; 67(1-3): 263–266.
51. Wunderlich W, Padmaja P, Warrier KGK. TEM characterization of sol-gel-processed alumina–silica and alumina–titania nano-hybrid oxide catalysts. Journal of the European Ceramic Society 2004; 24(2): 313–317.
52. Camargo PHC, Satyanarayana KG, Wypych Fernando. Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research 2009; 12(1): 1–39.
53. Yu M, Lourie O, Moloni K, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000; 287(5453): 637–640.
54. Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005; 438(7065): 197–200.
55. Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics 2002; 51(1): 1–186.
56. Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 2004; 42(14): 2929–2937.
57. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666–669.
58. Zhang Y, Small JP, Amori MES, et al. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Physical Review Letters 2005; 94(17): 176803.
59. Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physics Chemistry B 2004; 108(52): 19912–16.
60. Stankovich S, Piner R, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry 2006; 16: 155–158.
61. Stauffer D, Aharnoy A. Introduction to Percolation Theory. Bristol: Taylor and Francis; 1991. p. 181.
62. Ounaies Z, Park C, Wise KE, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology 2003; 63(11): 1637–1646.
63. Chung DDL. Electrical applications of carbon materials. Journal of Materials Science 2004; 39: 2645–2661.
64. Vaia RA, Wagner HD. Framework for nanocomposites. Materials Today 2004; 7(11): 32–37.
65. He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide. Chemical Physics Letters 1998; 287(1-2): 53–56.
66. Zhang Y, Tan Y, Stormer HL, et al. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 2005; 438: 201–204.
67. Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited. The Journal of Physics Chemistry B 1998; 102(23): 4477–4482.
68. Hirata M, Gotou T, Ohba M. Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonace- ous electronic circuits. Carbon 2005; 43(3): 503–10.
69. Kovtyukhova NI, Ollivier PJ, Martin BR, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials 1999; 11(3): 771–778.
70. Kotov NA, Dekany I, Fendler JH. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. Advanced Materials 1996; 8(8): 637–641.
71. Szabo T, Szeri A, Dekany I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005; 43(1): 87–94.
72. Jiang M, Dai L. Shear-band toughness of bulk metallic glass. Acta Materialia 2011; 59(11): 4525–37.
73. Cassagneau T, Guerin F, Fendler JH. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 2000; 16(18): 7318–7324.
74. Huang R, Suo Z, Prevost JH, et al. Inhomogeneous deformation in metallic glasses. Journal of the Mechanica and Physics of Solids 2002; 50(5): 1011–27.
75. Du X, Xiao M, Meng Y, et al. Novel synthesis of conductive poly(arylene disulfide)/graphite nanocomposite. Synthetic Metals 2004; 143(1): 129–132.
76. Grady DE. Properties of an adiabatic shear-band process zone. Journal of The Mechanics and Physics of Solids 1992; 40(6): 1197–1215.
77. Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science 2003; 48(3): 171–273.
78. Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica 1977; 25(4): 407–415.
DOI: https://doi.org/10.24294/can.v3i1.875
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Sajad Hussain Din
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.