References
Dalton AB, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres — These extraordinary composite fibres can be woven into electronic textiles. Nature 2003; 423(6941): 703–703.
Roy R, Roy RA, Roy DM. Alternative perspectives on “quasi-crystallinity”: Non-uniformity and nanocomposites. Materials Letters 1986; 4(8-9): 323–328.
Ounaies Z, Park C, Wise KE, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology 2003; 63(11): 1637–1646.
Schmidt D, Shah D, Giannelis EP. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science 2002; 6(3): 205–212.
Gleiter H. Materials with ultrafine microstructures: Retrospectives and perspectives. Nanostructured Materials 1992; 1(1): 1–19.
Iijima S. Helical microtubes of graphitic carbon. Nature 1991; 354(6348): 56–58.
Braun T, Schubert A, Sindelys Z. Nanoscience and nanotechnology on the balance. Scientometrics 1997; 38(2): 321–325.
Kamigaito O. What can be improved by nanometer composites? Journal of Japan Society of Powder Metalurgy 1991; 38(3): 315–321.
Biercuk MJ, Llaguno MC, Radosvljevic M, et al. Carbon nanotube composites for thermal management. Applied Physics Letters 2002; 80(15): 2767–2769.
Weisenberger MC, Grulke EA, Jacques D, et al. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. Journal of Nanoscience and Nanotechnology 2003; 3(6): 535–539.
Choa YH, Yang JK, Kim BH, et al. Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. Journal of Magnetism and Magnetic Materials 2003; 266(1-2): 12–19.
Wypych F, Seefeld N, Denicolo I. Preparation of nanocomposites based on the encapsulation of conducting polymers into 2H-MoS2 and 1T-TiS2. Quimica Nova 1997; 20(4): 356–360.
Aruna ST, Rajam KS. Synthesis, characterisation and properties of Ni/PSZ and Ni/YSZ nanocomposites. Scripta Materialia 2003; 48(5): 507–512.
Giannelis EP. Polymer layered silicate nanocomposites. Advanced Materials 1996; 8(1): 29–35.
Sternitzke M. Review: Structural ceramic nanocomposites. Journal of the European Ceramic Society 1997; 17(9): 1061–1082.
Peigney A, Laurent CH, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceramic International 2000; 26(6): 677–683.
Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Materials Science & Engineering 2000; 28(1-2): 1–63.
Gangopadhyay R, De A. Conducting polymer nanocomposites: A brief overview. Chemistry of Materials 2000; 12(7): 608–622.
Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, et al. An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability 2005; 88(2): 234–250.
Thostenson ET, Li C, Chou TW. Nanocomposites in context. Composites Science and Technology 2005; 65(3-4): 491–516.
Jordan J, Jacob KI, Tannenbaum R, et al. Experimental trends in polymer nanocomposites — A review. Materials Science and Engineering: A 2005; 393(1-2): 1–11.
Choi SM, Awaji H. Nanocomposites — A new material design concept. Science and Technology of Advanced Materials 2005; 6(1): 2–10.
Xie X, Mai YW, Zhou X. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science & Engineering: R 2005; 49(4): 89–112.
Ray SS, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science 2005; 50(8): 962–1079.
Jitendra KP, Pratheep KA, Manjusri M, et al, Recent advances in biodegradable nanocomposites. Journal of Nanoscience and Nanotechnology 2005; 5(4): 497–526.
Awaji H, Choi SM, Yagi E. Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mechanics of Materials 2002; 34(7): 411–422.
Niihara K. New design concept of structural ceramics — Ceramic nanocomposite. Journal of the Ceramic Society of Japan 1991; 99(1154): 974–982.
Nakahira A, Niihara K. Strctural ceramic nanocomposites by sintering method: Role of nano-size particles [PhD thesis]. Osaka: Osaka University; 1991. p. 404–417.
Chang JH, An YU. Nanocomposites of polyurethane with various organoclays: Thermomechanical properties, morphology, and gas permeability. Journal of Polymer Science Part B Polymer Physics 2002; 40(7): 670–677.
Zavyalov SA, Pivkina AN, Schoonman J. Formation and characterization of metal-polymer nanostructured composites. Solid State Ionics 2002; 147(3-4): 415–419.
Thompson CM, Herring HM, Gates TS, et al. Preparation and characterization of metal oxide/polyimide nanocomposites. Composites Science and Technology 2003; 63(11): 1591–1598.
Liu TX, Phang IY, Shen L, et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004; 37(19): 7214–7222.
Shah MA, Sheikh NA, Najar KA, et al. Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating system. Bulletin of Materials Science 2016; 39(7): 1753–1761.
Ogawa M, Kuroda K. Preparation of inorganic-organic nanocomposites through intercalation of organo-ammonium ions into layered silicates. Bulletin of the Chemical Society of Japan 1997; 70(11): 2593–618.
Kojima Y, Usuki A, Kawasumi M, et al. Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research 1993; 8(5): 1185–1189.
Stearns LC, Zhao J, Harmer MP. Processing and microstructure development in Al2O3-SiC ‘nanocomposites’. Journal of the European Ceramic Society 1992; 10(6): 473–477.
Borsa CE, Brook RJ. Fabrication of Al2O3/SiC nano-composites using a polymeric precursor for SiC. In: Hausner H, Messing GL, Horano S (editors). Proceedings of the International Conference of Ceramic Processing Science and Technology; 1994 Sept. 11-14; Friedrichshafen. Westerville, Germany: The American Ceramic Society; 1995. p. 653–658.
Riedel R, Strecker K, Petzow G. In situ polysilane-derived silicon carbide particulates dispersed in silicon nitride composite. Journal of the American Ceramic Society 1989; 72(11): 2071–2077.
Riedel R, Seher M, Becker G. Sintering of amorphous polymer-derived Si, N and C containing com- posite powders. Journal of the European Ceramic Society 1989; 5(2): 113–122.
Din SH, Shah MA, Sheikh NA. Tribology in industry effect of CVD-diamond on the tribological and mechanical performance of Titanium Alloy (Ti6Al4- V). Tribology in Industry 2016; 38(4): 530–542.
Vorotilov KA, Yanovskaya MI, Turevskaya EP, et al, Sol-gel derived ferroelectric thin films: Avenues for control of microstructural and electric properties. Journal of Sol-Gel Science and Technology 1999; 16(1-2): 109–118.
Hench LL, West JK. The sol-gel process. Chemical Review 1990; 90(1): 33–72.
Ennas G, Mei A, Musinu A, et al. Sol-gel preparation and characterization of Ni-SiO2 nanocomposites. Journal of Non-Crystalline Solids 1998; 232-234: 587–593.
Sen S, Choudharya RNP, Pramanik P. Synthesis and characterization of nanostructured ferroelectric compounds. Materials Letters 2004; 58(27-28): 3486–3490.
Viart N, Richard-Plouet M, Muller D, et al. Synthesis and characterization of Co/ZnO nanocomposites: Towards new perspectives offered by metal/piezoelectric composite materials. Thin Solid Films 2003; 437(1-2): 1–9.
Kundu TK, Mukherjee M, Chakravorty D, et al. Growth of nano-α-Fe2O3 in a titania matrix by the sol-gel route. Journal of Matererials Science 1998; 33(7): 1759–1763.
Baiju KV, Sibu CP, Rajesh K, et al. An aqueous sol-gel route to synthesize nanosized lanthana-doped titania having an increased anatase phase stability for photocatalytic application. Materials Chemistry and Physics 2005; 90(1): 123–127.
Ananthakumar S, Prabhakaran K, Hareesh US, et al. Gel casting process for Al2O3-SiC nanocompositees and its creep characteristics. Materials Chemistry and Physics 2004; 85(1): 151–157.
Sivakumar S, Sibu CP, Mukundan P, et al. Nanoporous titania-alumina mixed oxides — An alkoxide free sol-gel synthesis. Materials Letters 2004; 58(21): 2664–2669.
Warrier KGK, Anilkumar GM. Densification of mullite-SiC nanocomposite sol-gel precursors by pressureless sintering. Materials Chemistry and Physics 2001; 67(1-3): 263–266.
Wunderlich W, Padmaja P, Warrier KGK. TEM characterization of sol-gel-processed alumina–silica and alumina–titania nano-hybrid oxide catalysts. Journal of the European Ceramic Society 2004; 24(2): 313–317.
Camargo PHC, Satyanarayana KG, Wypych Fernando. Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research 2009; 12(1): 1–39.
Yu M, Lourie O, Moloni K, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000; 287(5453): 637–640.
Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005; 438(7065): 197–200.
Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics 2002; 51(1): 1–186.
Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 2004; 42(14): 2929–2937.
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666–669.
Zhang Y, Small JP, Amori MES, et al. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Physical Review Letters 2005; 94(17): 176803.
Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physics Chemistry B 2004; 108(52): 19912–16.
Stankovich S, Piner R, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry 2006; 16: 155–158.
Stauffer D, Aharnoy A. Introduction to Percolation Theory. Bristol: Taylor and Francis; 1991. p. 181.
Ounaies Z, Park C, Wise KE, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology 2003; 63(11): 1637–1646.
Chung DDL. Electrical applications of carbon materials. Journal of Materials Science 2004; 39: 2645–2661.
Vaia RA, Wagner HD. Framework for nanocomposites. Materials Today 2004; 7(11): 32–37.
He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide. Chemical Physics Letters 1998; 287(1-2): 53–56.
Zhang Y, Tan Y, Stormer HL, et al. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 2005; 438: 201–204.
Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited. The Journal of Physics Chemistry B 1998; 102(23): 4477–4482.
Hirata M, Gotou T, Ohba M. Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonace- ous electronic circuits. Carbon 2005; 43(3): 503–10.
Kovtyukhova NI, Ollivier PJ, Martin BR, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials 1999; 11(3): 771–778.
Kotov NA, Dekany I, Fendler JH. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. Advanced Materials 1996; 8(8): 637–641.
Szabo T, Szeri A, Dekany I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005; 43(1): 87–94.
Jiang M, Dai L. Shear-band toughness of bulk metallic glass. Acta Materialia 2011; 59(11): 4525–37.
Cassagneau T, Guerin F, Fendler JH. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 2000; 16(18): 7318–7324.
Huang R, Suo Z, Prevost JH, et al. Inhomogeneous deformation in metallic glasses. Journal of the Mechanica and Physics of Solids 2002; 50(5): 1011–27.
Du X, Xiao M, Meng Y, et al. Novel synthesis of conductive poly(arylene disulfide)/graphite nanocomposite. Synthetic Metals 2004; 143(1): 129–132.
Grady DE. Properties of an adiabatic shear-band process zone. Journal of The Mechanics and Physics of Solids 1992; 40(6): 1197–1215.
Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science 2003; 48(3): 171–273.
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica 1977; 25(4): 407–415.