Polymeric nanoparticles for protein and peptide delivery
Vol 8, Issue 1, 2025
(Abstract)
Abstract
Protein- and peptide-based medications are recognized for their effectiveness and lower toxicity compared to chemical-based drugs, making them promising therapeutic agents. However, their application has been limited by numerous delivery challenges. Polymeric nanostructures have emerged as effective tools for protein delivery due to their versatility and customizability. Polymers’ inherent adaptability makes them ideal for meeting the specific demands of protein-delivery systems. Various strategies have been employed, such as enzyme inhibitors, absorption enhancers, mucoadhesive polymers, and chemical modifications of proteins or peptides. This study explores the hurdles associated with protein and peptide transport, the use of polymeric nanocarriers (both natural and synthetic) to overcome these challenges, and the techniques for fabricating and characterizing nanoparticles.
Keywords
Full Text:
PDFReferences
1. Srivastava S, Sharma V, Bhushan B, et al. Nanocarriers for protein and peptide delivery: Recent advances and progress. Journal of Research in Pharmacy. 2021; 25(2): 99–116. doi: 10.29228/jrp.1
2. Panta P, Kwon JS, Son AR, et al. Protein drug-loaded polymeric nanoparticles. Journal of Biomedical Science and Engineering. 2014;7(10): 825–832. doi:10.4236/jbise.2014.710082
3. Schwendeman SP, Michael C, Alexander K, et al. Stability of proteins and their delivery from biodegradable polymer microspheres. Microparticulate systems for the delivery of proteins and vaccines. CRC Press; 1996. pp.1–49.
4. Zhu Q, Chen Z, Paul PK, et al. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharmaceutica Sinica B. 2021; 11(8): 2416–2448. doi: 10.1016/j.apsb.2021.04.001.
5. Karolina W. Biological barriers, and the influence of protein binding on the passage of drugs across them. Molecular Biology Reports. 2020; 47(4): 3221–3231. doi:10.1007/s11033-020-05361-2
6. Wu J, Sahoo JK, Li Y, et al. Challenges in delivering therapeutic peptides and proteins: A silk-based solution. Journal of Controlled Release. 2022; 345: 76–189. doi: 10.1016/j.jconrel.2022.02.011
7. Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Frontiers in Aging Neuroscience. 2020; 11: 373.
8. Cao S, Xu S, Wang H, et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech. 2019; 20: 190. doi:10.1208/s12249-019-1325-z
9. Stevens CA, Kaur K, Klok HM. Self-assembly of protein-polymer conjugates for drug delivery. Advanced Drug Delivery Reviews. 2021; 174: 447–460. doi: 10.1016/j.addr.2021.05.002
10. Moraru C, Mincea M, Menghiu G, et al. Understanding the factors influencing chitosan-based nanoparticles-protein corona interaction and drug delivery applications. Molecules. 2020; 25(20): 4758. doi: 10.3390/molecules25204758
11. Pudlarz A, Szemraj J. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sciences. 2018; 13(1): 285–298. doi: 10.1515/biol-2018-0035
12. Liu J, Ding X, Fu Y, et al. Cyclodextrins based delivery systems for macro biomolecules. European Journal of Medicinal Chemistry. 2021; 212: 113105. doi: 10.1016/j.ejmech.2020.113105
13. Abhishek P. Cyclodextrin-based nanoparticles for pharmaceutical applications. Environmental Chemistry Letters. 2021; 19(6): 4297–4310. doi: 10.1007/s10311-021-01275-y
14. Kabir II, Sorrell CC, Mofarah SS, et al. Alginate/polymer-based materials for fire retardancy: Synthesis, structure, properties, and applications. Polymer Reviews. 2021; 61(2): 357–414. doi: 10.1080/15583724.2020.1801726
15. Uyen NTT, Hamid ZAA, Tram NXT, et al. Fabrication of alginate microspheres for drug delivery: A review. International Journal of Biological Macromolecules. 2020; 15(153): 1035–1046. doi: 10.1016/j.ijbiomac.2019.10.233
16. Du Q, Zhou L, Lyu F, et al. The complex of whey protein and pectin: Interactions, functional properties and applications in food colloidal systems—A review, Colloids and Surfaces B. Biointerfaces. 2022; 210: 112253. doi: 10.1016/j.colsurfb.2021.112253
17. Li D, Xu F, Li J. Pectin-based micro-and nanomaterials in drug delivery in Micro-and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications. 2022; 97: 125. doi: 10.1016/b978-0-323-90986-0.00015-7
18. Mahmoud H. Elella A, Magdy W, et al. Antimicrobial pH-sensitive protein carrier based on modified xanthan gum. Journal of Drug Delivery Science and Technology. 2020; 57: 101673. doi: 10.1016/j.jddst.2020.101673
19. Aristeidis P, Aggeliki S. Xanthan-based polysaccharide/protein nanoparticles: Preparation, characterization, encapsulation and stabilization of curcumin. Carbohydrate Polymer Technologies and Applications. 2021; 2: 100075. doi: 10.1016/j.carpta.2021.100075
20. Xue Y, Li Y, Zhang D, et al. Calcium phosphate silicate microspheres with soybean lecithin as a sustained-release bone morphogenetic protein-delivery system for bone tissue regeneration. ACS Biomaterials Science & Engineering. 2023; 9(5): 2596–2607. doi: 10.1021/acsbiomaterials.2c01065
21. Radhika R, Xu Y, Nidhi J, Stenzel MH. Progress of albumin-polymer conjugates as efficient drug carriers. Pure and Applied Chemistry. 2022; 94(8): 983–997. doi: 10.1515/pac-2021-2006
22. Ashni A, Pratyusha M, Anindita L, et al. Collagen nanoparticles in drug delivery systems and tissue engineering. Applied Sciences. 2021; 11(23): 11369. doi: 10.3390/app112311369
23. Hong S, Choi DW, Kim HN, et al, Hee Ho Park, Protein-based nanoparticles as drug delivery systems. Pharmaceutics. 2020; 12(7): 604. doi: 10.3390/pharmaceutics12070604
24. Hsing-Wen S, Zi X, Shu F, Tu H. Nanomega Medical Corp National Tsing Hua University NTHU GP Medical. Assignee. Nanoparticles for protein drug delivery. U.S. Patent 8,283,317B1, 23 January 2012.
25. Xu T, He D, Jessica S, et al. The Regents of the University of California (Oakland, CA). Assignee. Bis-polymer lipid-peptide conjugates and nanoparticles thereof. U.S. Patent Application No. 10,806,702. 2018.
26. Muso-Cachumba JJ, Feng S, Belaid M, et al. Polymersomes for protein drug delivery across intestinal mucosa. International Journal of Pharmaceutics. 2023; 648: 123613. doi: 10.1016/j.ijpharm.2023.123613
27. Lee J, Yoo E, Choi SJ. Fabrication and characterization of nanoparticles with lecithin liposomes and poloxamer micelles: Impact of conformational structures of poloxamers. Food Chemistry. 2024; 435: 137613. doi: 10.1016/j.foodchem.2023.137613
28. Butreddy A, Gaddam RP, Kommineni N, et al. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. International journal of molecular sciences. 2021; 22(16): 8884. doi: 10.3390/ijms22168884
29. Angkawinitwong U, Courtenay AJ, Rodgers AM, et al. A novel transdermal protein delivery strategy via electrohydrodynamic coating of PLGA microparticles onto microneedles. ACS applied materials & interfaces. 2020; 12(11): 12478–12488. doi: /10.1021/acsami.9b22425
30. Kadekar S, Nawale GN, Rangasami VK, et al. Redox responsive Pluronic micelle mediated delivery of functional siRNA: a modular nano-assembly for targeted delivery. Biomaterials Science. 2021; 9(11): 3939–3944. doi: 10.1039/D1BM00428J
31. Hosseinpour S, Walsh LJ, Xu C. Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. Journal of Material Chemistry B. 2020; 8(43): 9863–9876. doi: 10.1039/d0tb01868f
32. Faruck MO, Zhao L, Hussein WM, et al. Polyacrylate-Peptide Antigen Conjugate as a Single-Dose Oral Vaccine against Group A Streptococcus. Vaccines (Basel). 2020; 8(1): 23. doi: 10.3390/vaccines8010023
33. Szczęch M, Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials 2020; 10(3): 49. doi: 10.3390/nano10030496
34. Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials. 2022; 12(3): 576. doi: 10.3390/nano12030576
35. Saha-Shah A, Sun S, Kong J, et al. Design and study of PEG linkers that enable robust characterization of PEGylated proteins, ACS Pharmacology & Translational Science. 2021; 4(4): 1280–1286. doi: 10.1021/acsptsci.1c00112
36. Li M, Jiang S, Simon J, et al. Brush conformation of polyethylene glycol determines the stealth effect of nanocarriers in the low protein adsorption regime. Nano Letters. 2021; 21(4): 1591–1598. doi: 10.1021/acs.nanolett.0c03756
37. Souto EB, Souto SB, Campos JR, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules. 2019; 24: 4209. doi: 10.3390/molecules24234209
38. Duong VA, Nguyen TTL, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020; 25(20): 4781. doi: 10.3390/molecules25204781
39. Ana L, Martínez L, Cristina P, et al. Protein-based nanoparticles for drug delivery purposes. International journal of pharmaceutics. 2020; 581: 119289. doi: 10.1016/j.ijpharm.2020.119289
40. Teleanu DM, Chircov C, Grumezescu AM, et al. Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics. 2019; 11(3): 101. doi:10.3390/pharmaceutics11030101
41. Pulingam T, Foroozandeh P, Chuah JA, et al. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials. 2022; 12(3): 576. doi: 10.3390/nano12030576
42. Sanchez-Lopez E, Egea MA, Davis BM, et al. Memantine-loaded pegylated biodegradable nanoparticles for the treatment of glaucoma. Small. 2018; 14(2): 14. doi: 10.1002/smll.201701808
43. Martinez Rivas CJ, Tarhini M, Badri W, et al. Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics. 2017; 532: 66–81. doi: 10.1016/j.ijpharm.2017.08.064
44. Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Advances. 2020; 10 (8): 4218–4231. doi: 10.1039/c9ra10857b
45. Pedroso‐Santana S, Fleitas‐Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International. 2020; 69 (5): 443–447. doi: 10.1002/pi.5970
46. Algharib SA, Dawood A, Zhou K, et al. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. Journal of Molecular Structure. 2022; 1252: 132129. doi: 10.22159/ijap.2018v10i5.26375
47. Carvalho PM, Felício MR, Santos NC, et al. Application of light scattering techniques to nanoparticle characterization and development. Frontiers in Chemistry. 2018; 6: 237. doi: 10.3389/fchem.2018.00237
48. Mourdikoudis S, Pallares RM, Thanh NT. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018; 10: 12871–12934. doi: 10.1039/C8NR02278J
49. Dazon C, Witschger O, Bau S, et al. Nanomaterial identification of powders: Comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods. Environmental Sciences: Nano. 2019; 6: 152–162. doi: 10.1039/C8EN00760H
50. Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nature communications. 2020; 11(1): 2337. doi: 10.1038/s41467-020-15889-3
51. Kaur P, Khanna A, Kaur N, et al. Synthesis and structural characterization of alumina nanoparticles. Phase Transitions. 2020; 93(6): 596–605. doi: 10.1080/01411594.2020.1765245
52. Zielińska A, Ferreira NR, Feliczak-Guzik A, et al. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharmaceutical Development and Technology. 2020; 25:1–13. doi: 10.1080/10837450.2020.1744008
53. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019; 12(7): 908–931. doi: 10.1016/j.arabjc.2017.05.011
54. Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020; 25(16): 3731. doi:10.3390/molecules25163731
55. Ostolska I, Wiśniewska M. Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid and Polymer Sciences. 2014; 292: 2453–246. doi: 10.1007/s00396-014-3276-y
56. Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in microbiology. 2023; 14: 1155622. doi: 10.3389/fmicb.2023.1155622
57. Sajid M, Plotka-Wasylka J, Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal. 2020; 154: 104623. doi: 10.1016/j.microc.2020.104623
58. Mu D, Zhou L, Shi L, et al. Quercetin-crosslinked chitosan nanoparticles: a potential treatment for allergic rhinitis. Scientific Reports. 2024; 14(1): 4021. doi: 10.1038/s41598-024-54501-2
59. Wang Y, Qiu F, Zheng Q, et al. Preparation, characterization and immune response of chitosan‑gold loaded Myricaria germanica polysaccharide. International Journal of Biological Macromolecules. 2024; 257 (2): 128670. doi: 10.1016/j.ijbiomac.2023.128670
60. Le ND, Nguyen BL, Patil BR, et al. Antiangiogenic therapeutic mRNA delivery using lung-selective polymeric nanomedicine for lung cancer treatment. ACS Nano. 2024; 18(11): 8392–8410. doi: 10.1021/acsnano.3c13039
61. Al-Nemrawi N, Wahsheh Y, Alzoubi KH. Transdermal delivery of methotrexate loaded in chitosan nanoparticles to treat rheumatoid arthritis. Current Drug Delivery. 2024; 21(3): 451–460. doi: 10.2174/1567201820666230428124346
62. Turky NO, Abdelmonem NA, Tammam SN, et al. Antibacterial and in vitro anticancer activities of the antimicrobial peptide NRC-07 encapsulated in chitosan nanoparticles. Journal of Peptide Science. 2024; 30(4): e3550. doi: 10.1002/psc.3550
63. Shen L, Zhou P, Wang YM, et al. Supramolecular nanoparticles based on elastin-like peptides modified capsid protein as drug delivery platform with enhanced cancer chemotherapy efficacy. International Journal of Biology and Macromolecules. 2024; 256 (Pt 2): 128107. doi: 10.1016/j.ijbiomac.2023.128107
64. Koide H, Yamaguchi K, Sato K, et al. Engineering temperature-responsive polymer nanoparticles that load and release paclitaxel, a low-molecular-weight anticancer drug. ACS Omega. 2023; 9(1): 1011–1019. doi: 10.1021/acsomega.3c07226
65. Arora S, Vyavahare N. Elastin-targeted nanoparticles delivering doxycycline mitigate cytokine storm and reduce immune cell infiltration in LPS-mediated lung inflammation. PLoS One. 2023; 18(6): e0286211. doi: 10.1371/journal.pone.0286211
66. Van Vliet EF, Knol MJ, Schiffelers RM, et al. Levodopa-loaded nanoparticles for the treatment of Parkinson’s disease. Journal of Control Release. 2023; 360: 212–224. doi: 10.1016/j.jconrel.2023.06.026
67. Zhou S, Cheng F, Zhang Y, et al. Engineering and delivery of cGAS-STING immunomodulators for the immunotherapy of cancer and autoimmune diseases. Accounts of Chemical Research Journal. 2023; 56(21): 2933–2943. doi: 10.1021/acs.accounts.3c00394
68. Moghaddam MM, Bolouri S, Golmohammadi R, et al. Targeted delivery of a short antimicrobial peptide (CM11) against Helicobacter pylori gastric infection using concanavalin A-coated chitosan nanoparticles. Journal of Materials Science: Materials in Medicine. 2023; 34(9): 44. doi: 10.1007/s10856-023-06748-w
69. Rajeshkumar RR, Pavadai P, Panneerselvam T, et al. Glucose-conjugated glutenin nanoparticles for selective targeting and delivery of camptothecin into breast cancer cells. Naunyn Schmiedebergs Archives of Pharmacology. 2023; 396(10): 2571–2586. doi: 10.1007/s00210-023-02480-y
70. Khalid Danish M, Gleeson JP, Brayden DJ, et al. Formulation, characterisation and evaluation of the antihypertensive peptides, isoleucine-proline-proline and leucine-lysine-proline in chitosan nanoparticles coated with zein for oral drug delivery. International Journal of Molecular Sciences. 2022; 23(19): 11160. doi: 10.3390/ijms231911160
71. Muhammad W, Zhu J, Zhai Z, et al. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomaterial. 2022; 148: 258–270. doi: 10.1016/j.actbio.2022.06.024
72. Wu H, Guo T, Nan J, et al. Hyaluronic-acid-coated chitosan nanoparticles for insulin oral delivery: fabrication, characterization, and hypoglycemic ability. Macromolecular Biosciences. 2022; 22(7): e2100493. doi: 10.1002/mabi.202100493
73. Wang Q, Dong Z, Lou F, et al. Phenylboronic ester-modified polymeric nanoparticles for promoting TRP2 peptide antigen delivery in cancer immunotherapy. Drug Delivery. 2022; 29(1): 2029–2043. doi: 10.1080/10717544.2022.2086941
74. Ahmed SMA, Ibrahim M, El-Bagory E, et al. Design of polymeric nanoparticles for oral delivery of capreomycin peptide using double emulsion technique: Impact of stress conditions. Journal of Drug Delivery Science and Technology. 2022; 71: 103326. doi: 10.1016/j.jddst.2022.103326
75. Lv Y, Zhang J, Wang C. Self-assembled chitosan nanoparticles for intranasal delivery of recombinant protein interleukin-17 receptor C (IL-17RC): preparation and evaluation in asthma mice. Bioengineered. 2021; 12(1): 3029–3039. doi: 10.1080/21655979.2021.1940622
76. Lv S, Sylvestre M, Song K, et al. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021; 277: 121076. doi: 10.1016/j.biomaterials.2021.121076
77. Hudan-Tsilo I, Tokarskyy O, Shevchuk O, et al. Chitosan self-assembled polymeric nanoparticles for percutaneous delivery of betamethasone in contact dermatitis. Drug Development and Industrial Pharmacy. 2021; 47(8): 1310–1317. doi: 10.1080/03639045.2021.1989457
78. Mamnoon B, Loganathan J, Confeld MI, et al. Targeted polymeric nanoparticles for drug delivery to hypoxic, triple-negative breast tumors. ACS Applied Bio Materials. 2021; 4(2): 1450–1460. doi: 10.1021/acsabm.0c01336
79. Mumuni MA, Kenechukwu FC, Ofokansi KC, et al. Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment. Carbohydrate Polymer. 2020; 229: 115506. doi: 10.1016/j.carbpol.2019.115506
80. Quadros HC, Santos LMF, Meira CS, et al. Development and in vitro characterization of polymeric nanoparticles containing recombinant adrenomedullin-2 intended for therapeutic angiogenesis. International Journal of Pharmaceutics. 2020; 576: 118997. doi: 10.1016/j.ijpharm.2019
81. Esfandyari-Manesh M, Abdi M, Talasaz AH, et al. S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques. DARU Journal of Pharmaceutical Sciences. 2020; 28(1): 131–138. doi: 10.1007/s40199-019-00324-w
82. Huang D, Yue F, Qiu J, et al. Polymeric nanoparticles functionalized with muscle-homing peptides for targeted delivery of phosphatase and tensin homolog inhibitor to skeletal muscle. Acta Biomaterial. 2020; 118:196–206. doi: 10.1016/j.actbio.2020.10.009
83. Gregory JV, Kadiyala P, Doherty R, et al. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nature Communications. 2020; 11(1): 5687. doi: 10.1038/s41467-020-19225-7
DOI: https://doi.org/10.24294/can8291
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nijhawan Monika, Neerude Sirisha, Nawale Sneha
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.