Effect of multiple laser shock processing on nano-scale microstructure of an aluminum alloy

Simge GencalpIrizalp, Nursen Saklakoglu

Abstract


In this study, nano-scale microstructural evolution in 6061-T6 alloy after laser shock processing (LSP) were studied. 6061-T6 alloy plate were subjected to multiple LSP. The LSP treated area was characterized by X-ray diffraction and the microstructure of the samples was analyzed by transmission electron microscopy. Focused Ion Beam (FIB) tools were used to prepare TEM samples in precise areas. It was found that even though aluminum had high stacking fault energy, LSP yielded to formation of ultrafine grains and deformation faults such as dislocation cells, stacking faults. The stacking fault probability (PSF) was obtained in LSP-treated alloy using X-Ray diffraction. Deformation induced stacking faults lead to the peak position shifts, broadening and asymmetry of diffraction. XRD analysis and TEM observations revealed significant densities of stacking faults in LSP-treated 6061-T6 alloy. And mechanical properties of LSP-treated alloy were also determined to understand the hardening behavior with high concentration of structural defects.


Full Text:

PDF

References


X.D. Ren, Y.K. Zhang, T. Zhang, D.W. Jiang, H.F. Yongzhuo, Y.F. Jiang, K.M. Chen, Comparison of the simulation and experimental fatigue crack behaviors in the nanoseconds laser shocked aluminum alloy, Mater. Design 32 (2011) 1138–1143.

C. Yang, P. D. Hodgson, Q. Liu, L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, J. Mater. Process. Tech. 201 (2008) 303–309.

K. Ding, L. Ye, Laser shock peening performance and process simulation, Woodhead Publishing, Cambridge, 2006.

J.Z. Lu, K.Y. Luo, Y.K. Zhang, G.F. Sun, Y.Y. Gu, J.Z. Zhou, X.D. Ren, X.C. Zhang, L.F. Zhang, K.M. Chen, C.Y. Cui, Y.F. Jiang, A.X. Feng, L. Zhang, Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel, Acta Mater. 58 (2010) 5354–5362.

S. Gencalp Irizalp, N. Saklakoglu, B.S. Yilbas, Characterization of microplastic deformation produced in 6061-T6 by using laser shock processing, Int. J. Adv. Manuf. Tech. 71 (2014) 109-115.

T. He, Y. Xiong, Z. Guo, L. Zhang, F. Ren, A.A. Volinsky, Microstructure and Hardness of Laser Shocked Ultra-fine-grained Aluminum, J. Mater. Sci. Technol. 27 (2011) 793-796.

J.P. Chu, J.M. Rigsbee, G. Banas,H.E. Elsayed-Ali, Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel, Mat. Sci. Eng. A 260 (1999) 260–268.

Y. Li, L. Zhou, W. He, G. He, X. Wang, X. Nie, B. Wang, S. Luo and Y. Li, The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures, Sci. Technol. Adv. Mater. 14 (2013) 055010.

X.D. Ren, L. Ruan, S.Q. Yuan, N.F. Ren, L.M. Zheng, Q.B. Zhan, J.Z. Zhou, H.M. Yang, Y. Wang, F.Z. Dai, Dislocation polymorphism transformation of 6061-T651 aluminum alloy processed by laser shock processing: Effect of tempering at the elevated temperatures, Mat. Sci. Eng. A 578 (2013) 96-102.

S. Sathyajith, S. Kalainathan, S. Swaroop, Laser peening without coating on aluminum alloy Al-6061-T6 using low energy Nd:YAG laser, Opt. Laser Technol. 45 (2013) 389–394.

S. Gencalp Irizalp, N. Saklakoglu, E. Akman, A. Demir, Pulsed Nd:YAG laser shock processing effects on mechanical properties of 6061-T6 alloy, Opt. Laser Technol. 56 (2014) 273–277.

C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, A. Banderas, J. Porro, M. Morales, Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples, Appl. Surf. Sci. 252 (2006) 6201–6205.

C. Rubio-Gonzalez, J.L. Ocana, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, M. Morales, Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy, Mat. Sci. Eng. A 386 (2004) 291–295.

U. Sanchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, J. Porro, M. Morales, Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing, Wear 260 (2006) 847–854.

D.H. Kalantar, J. Belak, E. Bringa, K. Budil, M. Caturla, J. Colvin, M. Kumar, K.T. Lorenz, R.E. Rudd, J. Stölken, A.M. Allen, K. Rosolankova, J.S. Wark, M.A. Meyers, M. Schneider, High-pressure, high-strain-rate lattice response of shocked materials, Phys. Plasmas 10 (2003) 1569-1576.

X.J. Cao, Y.S. Pyoun, R. Murakami, Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification, Appl. Surf. Sci. 256 (2010) 6297-6303.

M. Zehetbauer, R.Z. Valiev, Nanomaterials by severe plastic deformastion, Wiley, Weinheim, 2004.

K. Chen, C. Zheng, Z. Yuan, J. Lu, X. Ren, X. Luo, Deformation microstructures of austenitic stainless steel 2Cr13Mn9Ni4 under ultrafast strain rate by laser shock processing, Mat. Sci. Eng. A 587 (2013) 244–249.

Y.X. Ye, Y.Y. Feng, Z.C. Lian, Y.Q. Hua, Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser, Appl. Surf. Sci. 309 (2014) 240–249.

B.S. Yilbas, A.F.M. Arif, S.Z. Shuja, M.A. Gondal, J. Shirokof, Investigation into laser shock processing, J. Mater. Eng. Perform. 13 (2004) 47–54.

N. Saklakoglu, S. Gencalp Irizalp, E. Akman, A. Demir, Near surface modification of aluminum alloy induced by laser shock processing, Opt. Laser Technol. 64 (2014) 235–241.

M. Jublot, M. Texier, Sample preparation by focused ion beam micromachining for transmission electron microscopy imaging in front-view, Micron 56 (2014) 63–67.

https://workspace.imperial.ac.uk/nanoscienceandnanotechnology/Public/Focused%20Ion%20Beam%20(FIB).pdf

ASM, ASM metals handbook volume 10, materials characterization (fifth printing) (1998)

Fultz B, Howe J (2013) Diffraction Line shapes. Transmission Electron Microscopy and Diffractometry of Materials, 4th edn. Springer 429–462

Wei-min Zhou, Bo-hong JIANG, Yan Liu, Qi Xuan, Stacking fault probability and stcaking fault energy in CoNi alloy, Trans. Nonferrous Met. Soc. China, 11 (4), 555-558, 2001.

Noskova, N. I., & Pavlov, V. A. (1962). Stacking faults in nickel solid solutions. Physics Metal and Metallography, 14, 86.

Li, B., Yan, P.F., Sui, M.L., Ma, E., Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg, Acta Mater. 58 (2010) 173–179.

D. Hull, D. J. Bacon, Introduction to dislocations, Pergamon, Oxford, 1984.

Ren, X. D., Zhou, W. F., Ren, Y. P., Xu, S. D., Liu, F. F., Yuan, S. Q., ... & Huang, J. J. (2016). Dislocation evolution and properties enhancement of GH2036 by laser shock processing: Dislocation dynamics simulation and experiment. Materials Science and Engineering: A, 654, 184-192.

Xu, Z., Liu, M., Jia, Z., & Roven, H. J. (2017). Effect of cryorolling on microstructure and mechanical properties of a peak-aged AA6082 extrusion. Journal of Alloys and Compounds, 695, 827-840.

Shin, D. H., Park, J. J., Kim, Y. S., & Park, K. T. (2002). Constrained groove pressing and its application to grain refinement of aluminum. materials Science and Engineering: A, 328(1-2), 98-103.

Lu, J. Z., Luo, K. Y., Zhang, Y. K., Cui, C. Y., Sun, G. F., Zhou, J. Z., ... & Zhong, J. W. (2010). Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Materialia, 58(11), 3984-3994.

Wang, J. T., Zhang, Y. K., Chen, J. F., Zhou, J. Y., Luo, K. Y., Tan, W. S., ... & Lu, Y. L. (2017). Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy. Materials Science and Engineering: A, 704, 459-468.

Liu, M., Roven, H. J., Yu, Y., & Werenskiold, J. C. (2008). Deformation structures in 6082 aluminium alloy after severe plastic deformation by equal-channel angular pressing. Materials Science and Engineering: A, 483, 59-63.

Irizalp, S. G., & Saklakoglu, N. (2016). High strength and high ductility behavior of 6061-T6 alloy after laser shock processing. Optics and Lasers in Engineering, 77, 183-190.

Sun, H. Q., Shi, Y. N., Zhang, M. X., & Lu, K. (2007). Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Materialia, 55(3), 975-982.

Lu, K., & Lu, J. (2004). Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering: A, 375, 38-45.

P.J. Hurley, F.J. Humphreys, Modelling the recrystallization of single-phase aluminium, Acta Mater. 51 (2003) 3779–3793.

Zhang, X., Hu, T., Rufner, J. F., LaGrange, T. B., Campbell, G. H., Lavernia, E. J., ... & van Benthem, K. (2015). Metal/ceramic interface structures and segregation behavior in aluminum-based composites. Acta Materialia, 95, 254-263.

Zhang, Y., & Jiang, S. (2017). The Mechanism of Inhomogeneous Grain Refinement in a NiTiFe Shape Memory Alloy Subjected to Single-Pass Equal-Channel Angular Extrusion. Metals, 7(10), 400.

Youssef, K. M., Scattergood, R. O., Murty, K. L., Horton, J. A., & Koch, C. C. (2005). Ultrahigh strength and high ductility of bulk nanocrystalline copper. Applied Physics Letters, 87(9), 091904.

H. Chen, Y.L. Yao, J.W. Kysar, Spatially Resolved Characterization of Residual Stress Induced by Micro Scale Laser Shock Peening, J. Manuf. Sci. Eng. 126 (2004) 226-236.

Jeong, J. S., Woo, W., Oh, K. H., Kwon, S. K., & Koo, Y. M. (2012). In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels. Acta Materialia, 60(5), 2290-2299.

Tomota, Y., Tokuda, H., Adachi, Y., Wakita, M., Minakawa, N., Moriai, A., & Morii, Y. (2004). Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Materialia, 52(20), 5737-5745.

Jeong, J. S., Koo, Y. M., Jeong, I. K., Kim, S. K., & Kwon, S. K. (2011). Micro-structural study of high-Mn TWIP steels using diffraction profile analysis. Materials Science and Engineering: A, 530, 128-134.

Rafaja, D., Šı́ma, M., Klemm, V., Schreiber, G., Heger, D., Havela, L., & Kužel, R. (2004). X-ray diffraction on nanocrystalline Ti1− xAlxN thin films. Journal of alloys and compounds, 378(1-2), 107-111.

Nie, X., He, W., Zhou, L., Li, Q., & Wang, X. (2014). Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance. Materials Science and Engineering: A, 594, 161-167.

C.X. Huang, W.Hu, G.Yang, Z.F.Zhang, S.D.Wu, Q.Y.Wang, G.Gottstein, The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper–aluminum alloys processed by equal channel angular pressing, Mater.Sci.Eng. A 556 (2012) 638–647

J. Das, Evolution of nanostructure in α-brass upon cryorolling ,Mater.Sci.Eng. A 530(2011)675–679.

B. Roy, N.K.Kumar, P.M.G. Nambissan, J.Das, Evolution and interaction of twins, dislocations and stacking faults in rolled α-brass during nanostructuring at sub-zero temperature, AIPAdv.4 (2014) 067101

N.K. Kumar, B.Roy, J.Das, Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured α-brass, J.AlloysCompd.618 (2015)139–145.

Zhu, Y. T., Liao, X. Z., & Wu, X. L. (2012). Deformation twinning in nanocrystalline materials. Progress in Materials Science, 57(1), 1-62.

Wert, J. J., Singerman, S. A., Caldwell, S. G., & Chaudhuri, D. K. (1983). An X-ray diffraction study of the effect of stacking fault energy on the wear behavior of Cu-Al alloys. Wear, 92(2), 213-229

Talonen, J., & Hänninen, H. (2007). Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta materialia, 55(18), 6108-6118.

Gong, Y. L., Wen, C. E., Wu, X. X., Ren, S. Y., Cheng, L. P., & Zhu, X. K. (2013). The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys. Materials Science and Engineering: A, 583, 199-204

Yamanaka, K., Mori, M., Sato, S., & Chiba, A. (2017). Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Scientific Reports, 7(1), 10808.

Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

Bohong Jiang, Xuan Qi, Shaoxiong Yang, Weiming Zhou And T. Y. Hsu (Xu Zuyao), Effect of Stacking Fault Probability on Martensitic Transformation And Shape Memory Effect in Fe-Mn-Si Based Alloys , Acta Mater. Vol. 46, No. 2, pp. 501-510, 1998

Mahato, B., Shee, S. K., Sahu, T., Chowdhury, S. G., Sahu, P., Porter, D. A., & Karjalainen, L. P. (2015). An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Materialia, 86, 69-79.

Valiev, R. Z., Islamgaliev, R. K. & Alexandrov, I. V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000).

Liao, X. Z., Zhao, Y. H., Zhu, Y. T., Valiev, R. Z., & Gunderov, D. V. (2004). Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. Journal of applied physics, 96(1), 636-640.

Azushima, A. et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann. - Manuf. Technol. 57, 716–735 (2008).

Lugo, N., Llorca, N., Cabrera, J. M., & Horita, Z. (2008). Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Materials Science and Engineering: A, 477(1-2), 366-371

Liao, X. Z., Zhou, F., Lavernia, E. J., Srinivasan, S. G., Baskes, M. I., He, D. W., & Zhu, Y. T. (2003). Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Applied Physics Letters, 83(4), 632-634.

Lee, M. L., & Simmonds, P. J. (2010, August). Tensile strained III-V self-assembled nanostructures on a (110) surface. In Nanoepitaxy: Homo-and Heterogeneous Synthesis, Characterization, and Device Integration of Nanomaterials II (Vol. 7768, p. 776805). International Society for Optics and Photonics




DOI: http://dx.doi.org/10.24294/can.v2i1.716

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.