Micro/nanoscaled cellulose from coffee pods do not impact HT-29 cells while improving viability and endosomal compartment after C. jejuni CDT intoxication
Vol 7, Issue 2, 2024
VIEWS - 835 (Abstract) 731 (PDF)
Abstract
The food industry progressively requires innovative and environmentally safe packaging materials with increased physical, mechanical, and barrier properties. Due to its unique properties, cellulose has several potential applications in the food industry as a packaging material, stabilizing agent, and functional food ingredient. A coffee pod is a filter of cellulosic, non-rigid, ready-made material containing ground portions and pressed coffee prepared in dedicated machines. In our study, we obtained, with homogenization and sonication, cellulose micro/nanoparticles from three different coffee pods. It is known that nanoparticulate systems can enter live cells and, if ingested, could exert alterations in gastrointestinal tract cells. Our work aims to investigate the response of HT-29 cells to cellulose nanoparticles from coffee pods. In particular, the subcellular effects between coffee-embedded nanocellulose (CENC) and cellulose nanoparticles (NC) were compared. Finally, we analysed the pathologic condition (Cytolethal Distending Toxin (CDT) from Campylobacter jejuni) on the same cells conditioned by NC and CENC. We evidenced that, for the cellular functional features analysed, NC and CENC pre-treatments do not worsen cell response to the C. jejuni CDT, also pointing out an improvement of the autophagic flux, particularly for CENC preconditioning.
Keywords
Full Text:
PDFReferences
1. Athinarayanan J, Periasamy VS, Alsaif MA, et al. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biology and Toxicology. 2014; 30(2): 89-100. doi: 10.1007/s10565-014-9271-8
2. Gómez HC, Serpa A, Velásquez-Cock J, et al. Vegetable nanocellulose in food science: A review. Food Hydrocolloids. 2016; 57: 178-186. doi: 10.1016/j.foodhyd.2016.01.023
3. Khare S, DeLoid GM, Molina RM, et al. Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact. 2020; 18: 100216. doi: 10.1016/j.impact.2020.100216
4. Onyango C, Unbehend G, Lindhauer MG. Effect of cellulose-derivatives and emulsifiers on creep-recovery and crumb properties of gluten-free bread prepared from sorghum and gelatinised cassava starch. Food Research International. 2009; 42(8): 949-955. doi: 10.1016/j.foodres.2009.04.011
5. Pereda M, Amica G, Rácz I, et al. Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering. 2011; 103(1): 76-83. doi: 10.1016/j.jfoodeng.2010.10.001
6. Boluk Y, Lahiji R, Zhao L, et al. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011; 377(1-3): 297-303. doi: 10.1016/j.colsurfa.2011.01.003
7. Kalashnikova I, Bizot H, Cathala B, et al. New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals. Langmuir. 2011; 27(12): 7471-7479. doi: 10.1021/la200971f
8. Zhao GH, Kapur N, Carlin B, et al. Characterisation of the interactive properties of microcrystalline cellulose-carboxymethyl cellulose hydrogels. International Journal of Pharmaceutics. 2011; 415(1-2): 95-101. doi: 10.1016/j.ijpharm.2011.05.054
9. Tang L, Huang B, Lu Q, et al. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresource Technology. 2013; 127: 100-105. doi: 10.1016/j.biortech.2012.09.133
10. Paunonen SV, Hong RY. The many faces of assumed similarity in perceptions of personality. Journal of Research in Personality. 2013; 47(6): 800-815. doi: 10.1016/j.jrp.2013.08.007
11. Alves JS, dos Reis KC, Menezes EGT, et al. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydrate Polymers. 2015; 115: 215-222. doi: 10.1016/j.carbpol.2014.08.057
12. Nsor-Atindana J, Chen M, Goff HD, et al. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydrate Polymers. 2017; 172: 159-174. doi: 10.1016/j.carbpol.2017.04.021
13. Robson AA. Tackling obesity: can food processing be a solution rather than a problem? Agro Food Industry Hi-Tech. 2012; 23(2): 10-11.
14. Cao X, Zhang T, DeLoid GM, et al. Cytotoxicity and cellular proteome impact of cellulose nanocrystals using simulated digestion and an in vitro small intestinal epithelium cellular model. NanoImpact. 2020; 20: 100269. doi: 10.1016/j.impact.2020.100269
15. Li Q, Wu Y, Fang R, et al. Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends in Food Science & Technology. 2021; 110: 573-583. doi: 10.1016/j.tifs.2021.02.027
16. DeLoid GM, Cao X, Molina RM, et al. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environmental Science: Nano. 2019; 6(7): 2105-2115. doi: 10.1039/c9en00184k
17. Karimian A, Parsian H, Majidinia M, et al. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. International Journal of Biological Macromolecules. 2019; 133: 850-859. doi: 10.1016/j.ijbiomac.2019.04.117
18. Lanfranchi M, Giannetto C, Dimitrova V. Evolutionary aspects of coffee consumers’ buying habits: Results of a sample survey. Bulgarian Journal of Agricultural Science. 2016; 22(5): 705-712.
19. Abuabara L, Paucar-Caceres A, Burrowes-Cromwell T. Consumers’ values and behaviour in the Brazilian coffee-in-capsules market: promoting circular economy. International Journal of Production Research. 2019; 57(23): 7269-7288. doi: 10.1080/00207543.2019.1629664
20. Chen H, Xu L, Yu K, et al. Release of microplastics from disposable cups in daily use. Science of The Total Environment. 2023; 854: 158606. doi: 10.1016/j.scitotenv.2022.158606
21. Corlett D, Stock Phot A. Nanoplastic should be better understood. Nature Nanotechnology. 2019; 14(4): 299-299. doi: 10.1038/s41565-019-0437-7
22. Cox KD, Covernton GA, Davies HL, et al. Human Consumption of Microplastics. Environmental Science & Technology. 2019; 53(12): 7068-7074. doi: 10.1021/acs.est.9b01517
23. Zangmeister CD, Radney JG, Benkstein KD, et al. Common Single-Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use. Environmental Science & Technology. 2022; 56(9): 5448-5455. doi: 10.1021/acs.est.1c06768
24. Rodríguez-Fabià S, Torstensen J, Johansson L, et al. Hydrophobisation of lignocellulosic materials part I: physical modification. Cellulose. 2022; 29(10): 5375-5393. doi: 10.1007/s10570-022-04620-8
25. Torstensen J, Ottesen V, Rodríguez-Fabià S, et al. The influence of temperature on cellulose swelling at constant water density. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-22092-5
26. Dagnon KL, Shanmuganathan K, Weder C, et al. Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices. Macromolecules. 2012; 45(11): 4707-4715. doi: 10.1021/ma300463y
27. Liu L, Kong F. The behavior of nanocellulose in gastrointestinal tract and its influence on food digestion. Journal of Food Engineering. 2021; 292: 110346. doi: 10.1016/j.jfoodeng.2020.110346
28. Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine. 2017; 21(9): 1668-1686. doi: 10.1111/jcmm.13110
29. Wang T, Bai J, Jiang X, et al. Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. ACS Nano. 2012; 6(2): 1251-1259. doi: 10.1021/nn203892h
30. Crater JS, Carrier RL. Barrier Properties of Gastrointestinal Mucus to Nanoparticle Transport. Macromolecular Bioscience. 2010; 10(12): 1473-1483. doi: 10.1002/mabi.201000137
31. Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology. 2013; 3(1/2): 163. doi: 10.1504/ijbnn.2013.054515
32. Suvarna V, Nair A, Mallya R, et al. Antimicrobial Nanomaterials for Food Packaging. Antibiotics. 2022; 11(6): 729. doi: 10.3390/antibiotics11060729
33. Bintsis T. Foodborne pathogens. AIMS Microbiology. 2017; 3(3): 529-563. doi: 10.3934/microbiol.2017.3.529
34. Canonico B, Cesarini E, Montanari M, et al. Rapamycin Re-Directs Lysosome Network, Stimulates ER-Remodeling, Involving Membrane CD317 and Affecting Exocytosis, in Campylobacter Jejuni-Lysate-Infected U937 Cells. International Journal of Molecular Sciences. 2020; 21(6): 2207. doi: 10.3390/ijms21062207
35. Pickett CL, Pesci EC, Cottle DL, et al. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infection and Immunity. 1996; 64(6): 2070-2078. doi: 10.1128/iai.64.6.2070-2078.1996
36. Lara-Tejero M, Galán JE. A Bacterial Toxin That Controls Cell Cycle Progression as a Deoxyribonuclease I-Like Protein. Science. 2000; 290(5490): 354-357. doi: 10.1126/science.290.5490.354
37. Zhang Y, Huang R, Jiang Y, et al. The role of bacteria and its derived biomaterials in cancer radiotherapy. Acta Pharmaceutica Sinica B. 2023; 13(10): 4149-4171. doi: 10.1016/j.apsb.2022.10.013
38. Canonico B, Campana R, Luchetti F, et al. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells. Apoptosis. 2014; 19(8): 1225-1242. doi: 10.1007/s10495-014-1005-0
39. Canonico B, Di Sario G, Cesarini E, et al. Monocyte Response to Different Campylobacter jejuni Lysates Involves Endoplasmic Reticulum Stress and the Lysosomal-Mitochondrial Axis: When Cell Death Is Better Than Cell Survival. Toxins. 2018; 10(6): 239. doi: 10.3390/toxins10060239
40. Jongsma MLM, Berlin I, Wijdeven RHM, et al. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport. Cell. 2016; 166(1): 152-166. doi: 10.1016/j.cell.2016.05.078
41. Nasoni MG, Carloni S, Canonico B, et al. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic‐like injury in hippocampal HT22 cells. Journal of Pineal Research. 2021; 71(1). doi: 10.1111/jpi.12747
42. Canonico B, Cangiotti M, Montanari M, et al. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biological Chemistry. 2022; 403(3): 345-360. doi: 10.1515/hsz-2021-0388
43. Salucci S, Burattini S, Battistelli M, et al. Tyrosol prevents apoptosis in irradiated keratinocytes. Journal of Dermatological Science. 2015; 80(1): 61-68. doi: 10.1016/j.jdermsci.2015.07.002
44. Fiorani M, De Matteis R, Canonico B, et al. Temporal correlation of morphological and biochemical changes with the recruitment of different mechanisms of reactive oxygen species formation during human SW872 cell adipogenic differentiation. BioFactors. 2021; 47(5): 837-851. doi: 10.1002/biof.1769
45. Fusi V, Formica M, Giorgi L, et al. Preparation of heterocyclic compounds as fluorescent probes for detection in biological systems. Available online: https://ora.uniurb.it/handle/11576/2675836.2 (accessed on 5 January 2023).
46. Canonico B, Giorgi L, Nasoni MG, et al. Synthesis and biological characterization of a new fluorescent probe for vesicular trafficking based on polyazamacrocycle derivative. Biological Chemistry. 2021; 402(10): 1225-1237. doi: 10.1515/hsz-2021-0204
47. Tayeb A, Amini E, Ghasemi S, et al. Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules. 2018; 23(10): 2684. doi: 10.3390/molecules23102684
48. Roman M, Winter WT. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules. 2004; 5(5): 1671-1677. doi: 10.1021/bm034519
49. Čolić M, Tomić S, Bekić M. Immunological aspects of nanocellulose. Immunology Letters. 2020; 222: 80-89. doi: 10.1016/j.imlet.2020.04.004
50. Pereira MM, Raposo NRB, Brayner R, et al. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology. 2013; 24(7): 075103. doi: 10.1088/0957-4484/24/7/075103
51. Oh JH, Lee JT, Yang ES, et al. The coffee diterpene kahweol induces apoptosis in human leukemia U937 cells through down-regulation of Akt phosphorylation and activation of JNK. Apoptosis. 2009; 14(11): 1378-1386. doi: 10.1007/s10495-009-0407-x
52. Jabir NR, Islam MT, Tabrez S, et al. An insight towards anticancer potential of major coffee constituents. BioFactors. 2018; 44(4): 315-326. doi: 10.1002/biof.1437
53. Prasanthi JRP, Dasari B, Marwarha G, et al. Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radical Biology and Medicine. 2010; 49(7): 1212-1220. doi: 10.1016/j.freeradbiomed.2010.07.007
54. Ko J, Kim JY, Kim J, et al. Anti-oxidative and anti-adipogenic effects of caffeine in an in vitro model of Graves’ orbitopathy. Endocrine Journal. 2020; 67(4): 439-447. doi: 10.1507/endocrj.ej19-0521
55. Silvério A dos SD, Pereira RGFA, Duarte SM da S, et al. Coffee beverage reduces ROS production and does not affect the organism s response against Candida albicans. Revista de Ciências Farmacêutica Básica e Aplicadas—RCFBA. 2020; 41. doi: 10.4322/2179-443x.0684
56. Castaldo L, Toriello M, Sessa R, et al. Antioxidant and Anti-Inflammatory Activity of Coffee Brew Evaluated after Simulated Gastrointestinal Digestion. Nutrients. 2021; 13(12): 4368. doi: 10.3390/nu13124368
57. To EE, Erlich JR, Liong F, et al. Therapeutic Targeting of Endosome and Mitochondrial Reactive Oxygen Species Protects Mice from Influenza Virus Morbidity. Frontiers in Pharmacology. 2022; 13: 870156. doi: 10.3389/fphar.2022.870156
58. Zeng Q, Ma X, Song Y, et al. Targeting regulated cell death in tumor nanomedicines. Theranostics. 2022; 12(2): 817-841. doi: 10.7150/thno.67932
59. Amatori S, Ambrosi G, Borgogelli E, et al. Modulating the Sensor Response to Halide Using NBD-Based Azamacrocycles. Inorganic Chemistry. 2014; 53(9): 4560-4569. doi: 10.1021/ic5001649
60. Miękus N, Marszałek K, Podlacha M, et al. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules. 2020; 25(17): 3804. doi: 10.3390/molecules25173804
61. Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. Journal of Agricultural and Food Chemistry. 2020; 68(45): 12505-12526. doi: 10.1021/acs.jafc.0c05002
62. Cano-Marquina A, Tarín JJ, Cano A. The impact of coffee on health. Maturitas. 2013; 75(1): 7-21. doi: 10.1016/j.maturitas.2013.02.002
63. Montanari M, Guescini M, Gundogdu O, et al. Extracellular Vesicles from Campylobacter jejuni CDT-Treated Caco-2 Cells Inhibit Proliferation of Tumour Intestinal Caco-2 Cells and Myeloid U937 Cells: Detailing the Global Cell Response for Potential Application in Anti-Tumour Strategies. International Journal of Molecular Sciences. 2022; 24(1): 487. doi: 10.3390/ijms24010487
64. Hickey TE, Majam G, Guerry P. Intracellular Survival of Campylobacter jejuni in Human Monocytic Cells and Induction of Apoptotic Death by Cytholethal Distending Toxin. Infection and Immunity. 2005; 73(8): 5194-5197. doi: 10.1128/iai.73.8.5194-5197.2005
65. Alzheimer M, Svensson SL, König F, et al. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLOS Pathogens. 2020; 16(2): e1008304. doi: 10.1371/journal.ppat.1008304
66. Martin OCB, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins. 2020; 12(2): 63. doi: 10.3390/toxins12020063
67. Balta I, Butucel E, Stef L, et al. Anti-Campylobacter Probiotics: Latest Mechanistic Insights. Foodborne Pathogens and Disease. 2022; 19(10): 693-703. doi: 10.1089/fpd.2022.0039
68. Athinarayanan J, Alshatwi AA, Subbarayan Periasamy V. Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydrate Polymers. 2020; 235: 115961. doi: 10.1016/j.carbpol.2020.115961
69. Ventura C, Pinto F, Lourenço AF, et al. On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose. 2020; 27(10): 5509-5544. doi: 10.1007/s10570-020-03176-9
70. Wang X, Qiu Y, Wang M, et al. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. International Journal of Nanomedicine. 2020; 15: 9447-9467. doi: 10.2147/ijn.s274289
71. López-Galilea I, De Peña MP, Cid C. Correlation of Selected Constituents with the Total Antioxidant Capacity of Coffee Beverages: Influence of the Brewing Procedure. Journal of Agricultural and Food Chemistry. 2007; 55(15): 6110-6117. doi: 10.1021/jf070779x
72. Acidri R, Sawai Y, Sugimoto Y, et al. Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans. Antioxidants. 2020; 9(2): 93. doi: 10.3390/antiox9020093
73. Andueza S, Cid C, Cristina Nicoli M. Comparison of antioxidant and pro-oxidant activity in coffee beverages prepared with conventional and “Torrefacto” coffee. LWT—Food Science and Technology. 2004; 37(8): 893-897. doi: 10.1016/j.lwt.2004.04.004
74. Cui WQ, Wang ST, Pan D, et al. Caffeine and its main targets of colorectal cancer. World Journal of Gastrointestinal Oncology. 2020; 12(2): 149-172. doi: 10.4251/wjgo.v12.i2.149
75. Lee C. Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clinica Chimica Acta. 2000; 295(1-2): 141-154. doi: 10.1016/S0009-8981(00)00201-1
76. Soares MJ, Sampaio GR, Guizellini GM, et al. Regular and decaffeinated espresso coffee capsules: Unravelling the bioaccessibility of phenolic compounds and their antioxidant properties in milk model system upon in vitro digestion. LWT. 2021; 135: 110255. doi: 10.1016/j.lwt.2020.110255
77. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death & Differentiation. 2014; 22(3): 377-388. doi: 10.1038/cdd.2014.150
78. Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration. 2016; 11(1). doi: 10.1186/s13024-016-0140-1
79. Farias-Pereira R, Park CS, Park Y. Mechanisms of action of coffee bioactive components on lipid metabolism. Food Science and Biotechnology. 2019; 28(5): 1287-1296. doi: 10.1007/s10068-019-00662-0
80. Al-Bari MdAA, Ito Y, Ahmed S, et al. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. International Journal of Molecular Sciences. 2021; 22(18): 9807. doi: 10.3390/ijms22189807
81. Silva FAGS, Dourado F, Gama M, et al. Nanocellulose Bio-Based Composites for Food Packaging. Nanomaterials. 2020; 10(10): 2041. doi: 10.3390/nano10102041
82. Bhattacharya K, Kiliç G, Costa PM, Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology. 2017; 11(6): 809-826. doi: 10.1080/17435390.2017.1363309
83. Stoudmann N, Schmutz M, Hirsch C, et al. Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology. 2020; 14(9): 1241-1257. doi: 10.1080/17435390.2020.1814440
84. Hiura TS, Li N, Kaplan R, et al. The Role of a Mitochondrial Pathway in the Induction of Apoptosis by Chemicals Extracted from Diesel Exhaust Particles. The Journal of Immunology. 2000; 165(5): 2703-2711. doi: 10.4049/jimmunol.165.5.2703
85. Teodoro JS, Simões AM, Duarte FV, et al. Assessment of the toxicity of silver nanoparticles in vitro: A mitochondrial perspective. Toxicology in Vitro. 2011; 25(3): 664-670. doi: 10.1016/j.tiv.2011.01.004
DOI: https://doi.org/10.24294/can.v7i2.6414
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Daniele Lopez, Giovanna Panza, Pietro Gobbi, Michele Guescini, Laura Valentini, Stefano Papa, Vieri Fusi, Eleonora Macedi, Daniele Paderni, Mariele Montanari, Barbara Canonico
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.