References
Athinarayanan J, Periasamy VS, Alsaif MA, et al. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biology and Toxicology. 2014; 30(2): 89-100. doi: 10.1007/s10565-014-9271-8
Gómez HC, Serpa A, Velásquez-Cock J, et al. Vegetable nanocellulose in food science: A review. Food Hydrocolloids. 2016; 57: 178-186. doi: 10.1016/j.foodhyd.2016.01.023
Khare S, DeLoid GM, Molina RM, et al. Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact. 2020; 18: 100216. doi: 10.1016/j.impact.2020.100216
Onyango C, Unbehend G, Lindhauer MG. Effect of cellulose-derivatives and emulsifiers on creep-recovery and crumb properties of gluten-free bread prepared from sorghum and gelatinised cassava starch. Food Research International. 2009; 42(8): 949-955. doi: 10.1016/j.foodres.2009.04.011
Pereda M, Amica G, Rácz I, et al. Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering. 2011; 103(1): 76-83. doi: 10.1016/j.jfoodeng.2010.10.001
Boluk Y, Lahiji R, Zhao L, et al. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011; 377(1-3): 297-303. doi: 10.1016/j.colsurfa.2011.01.003
Kalashnikova I, Bizot H, Cathala B, et al. New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals. Langmuir. 2011; 27(12): 7471-7479. doi: 10.1021/la200971f
Zhao GH, Kapur N, Carlin B, et al. Characterisation of the interactive properties of microcrystalline cellulose-carboxymethyl cellulose hydrogels. International Journal of Pharmaceutics. 2011; 415(1-2): 95-101. doi: 10.1016/j.ijpharm.2011.05.054
Tang L, Huang B, Lu Q, et al. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresource Technology. 2013; 127: 100-105. doi: 10.1016/j.biortech.2012.09.133
Paunonen SV, Hong RY. The many faces of assumed similarity in perceptions of personality. Journal of Research in Personality. 2013; 47(6): 800-815. doi: 10.1016/j.jrp.2013.08.007
Alves JS, dos Reis KC, Menezes EGT, et al. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydrate Polymers. 2015; 115: 215-222. doi: 10.1016/j.carbpol.2014.08.057
Nsor-Atindana J, Chen M, Goff HD, et al. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydrate Polymers. 2017; 172: 159-174. doi: 10.1016/j.carbpol.2017.04.021
Robson AA. Tackling obesity: can food processing be a solution rather than a problem? Agro Food Industry Hi-Tech. 2012; 23(2): 10-11.
Cao X, Zhang T, DeLoid GM, et al. Cytotoxicity and cellular proteome impact of cellulose nanocrystals using simulated digestion and an in vitro small intestinal epithelium cellular model. NanoImpact. 2020; 20: 100269. doi: 10.1016/j.impact.2020.100269
Li Q, Wu Y, Fang R, et al. Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends in Food Science & Technology. 2021; 110: 573-583. doi: 10.1016/j.tifs.2021.02.027
DeLoid GM, Cao X, Molina RM, et al. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environmental Science: Nano. 2019; 6(7): 2105-2115. doi: 10.1039/c9en00184k
Karimian A, Parsian H, Majidinia M, et al. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. International Journal of Biological Macromolecules. 2019; 133: 850-859. doi: 10.1016/j.ijbiomac.2019.04.117
Lanfranchi M, Giannetto C, Dimitrova V. Evolutionary aspects of coffee consumers’ buying habits: Results of a sample survey. Bulgarian Journal of Agricultural Science. 2016; 22(5): 705-712.
Abuabara L, Paucar-Caceres A, Burrowes-Cromwell T. Consumers’ values and behaviour in the Brazilian coffee-in-capsules market: promoting circular economy. International Journal of Production Research. 2019; 57(23): 7269-7288. doi: 10.1080/00207543.2019.1629664
Chen H, Xu L, Yu K, et al. Release of microplastics from disposable cups in daily use. Science of The Total Environment. 2023; 854: 158606. doi: 10.1016/j.scitotenv.2022.158606
Corlett D, Stock Phot A. Nanoplastic should be better understood. Nature Nanotechnology. 2019; 14(4): 299-299. doi: 10.1038/s41565-019-0437-7
Cox KD, Covernton GA, Davies HL, et al. Human Consumption of Microplastics. Environmental Science & Technology. 2019; 53(12): 7068-7074. doi: 10.1021/acs.est.9b01517
Zangmeister CD, Radney JG, Benkstein KD, et al. Common Single-Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use. Environmental Science & Technology. 2022; 56(9): 5448-5455. doi: 10.1021/acs.est.1c06768
Rodríguez-Fabià S, Torstensen J, Johansson L, et al. Hydrophobisation of lignocellulosic materials part I: physical modification. Cellulose. 2022; 29(10): 5375-5393. doi: 10.1007/s10570-022-04620-8
Torstensen J, Ottesen V, Rodríguez-Fabià S, et al. The influence of temperature on cellulose swelling at constant water density. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-22092-5
Dagnon KL, Shanmuganathan K, Weder C, et al. Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices. Macromolecules. 2012; 45(11): 4707-4715. doi: 10.1021/ma300463y
Liu L, Kong F. The behavior of nanocellulose in gastrointestinal tract and its influence on food digestion. Journal of Food Engineering. 2021; 292: 110346. doi: 10.1016/j.jfoodeng.2020.110346
Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine. 2017; 21(9): 1668-1686. doi: 10.1111/jcmm.13110
Wang T, Bai J, Jiang X, et al. Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. ACS Nano. 2012; 6(2): 1251-1259. doi: 10.1021/nn203892h
Crater JS, Carrier RL. Barrier Properties of Gastrointestinal Mucus to Nanoparticle Transport. Macromolecular Bioscience. 2010; 10(12): 1473-1483. doi: 10.1002/mabi.201000137
Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology. 2013; 3(1/2): 163. doi: 10.1504/ijbnn.2013.054515
Suvarna V, Nair A, Mallya R, et al. Antimicrobial Nanomaterials for Food Packaging. Antibiotics. 2022; 11(6): 729. doi: 10.3390/antibiotics11060729
Bintsis T. Foodborne pathogens. AIMS Microbiology. 2017; 3(3): 529-563. doi: 10.3934/microbiol.2017.3.529
Canonico B, Cesarini E, Montanari M, et al. Rapamycin Re-Directs Lysosome Network, Stimulates ER-Remodeling, Involving Membrane CD317 and Affecting Exocytosis, in Campylobacter Jejuni-Lysate-Infected U937 Cells. International Journal of Molecular Sciences. 2020; 21(6): 2207. doi: 10.3390/ijms21062207
Pickett CL, Pesci EC, Cottle DL, et al. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infection and Immunity. 1996; 64(6): 2070-2078. doi: 10.1128/iai.64.6.2070-2078.1996
Lara-Tejero M, Galán JE. A Bacterial Toxin That Controls Cell Cycle Progression as a Deoxyribonuclease I-Like Protein. Science. 2000; 290(5490): 354-357. doi: 10.1126/science.290.5490.354
Zhang Y, Huang R, Jiang Y, et al. The role of bacteria and its derived biomaterials in cancer radiotherapy. Acta Pharmaceutica Sinica B. 2023; 13(10): 4149-4171. doi: 10.1016/j.apsb.2022.10.013
Canonico B, Campana R, Luchetti F, et al. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells. Apoptosis. 2014; 19(8): 1225-1242. doi: 10.1007/s10495-014-1005-0
Canonico B, Di Sario G, Cesarini E, et al. Monocyte Response to Different Campylobacter jejuni Lysates Involves Endoplasmic Reticulum Stress and the Lysosomal-Mitochondrial Axis: When Cell Death Is Better Than Cell Survival. Toxins. 2018; 10(6): 239. doi: 10.3390/toxins10060239
Jongsma MLM, Berlin I, Wijdeven RHM, et al. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport. Cell. 2016; 166(1): 152-166. doi: 10.1016/j.cell.2016.05.078
Nasoni MG, Carloni S, Canonico B, et al. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic‐like injury in hippocampal HT22 cells. Journal of Pineal Research. 2021; 71(1). doi: 10.1111/jpi.12747
Canonico B, Cangiotti M, Montanari M, et al. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biological Chemistry. 2022; 403(3): 345-360. doi: 10.1515/hsz-2021-0388
Salucci S, Burattini S, Battistelli M, et al. Tyrosol prevents apoptosis in irradiated keratinocytes. Journal of Dermatological Science. 2015; 80(1): 61-68. doi: 10.1016/j.jdermsci.2015.07.002
Fiorani M, De Matteis R, Canonico B, et al. Temporal correlation of morphological and biochemical changes with the recruitment of different mechanisms of reactive oxygen species formation during human SW872 cell adipogenic differentiation. BioFactors. 2021; 47(5): 837-851. doi: 10.1002/biof.1769
Fusi V, Formica M, Giorgi L, et al. Preparation of heterocyclic compounds as fluorescent probes for detection in biological systems. Available online: https://ora.uniurb.it/handle/11576/2675836.2 (accessed on 5 January 2023).
Canonico B, Giorgi L, Nasoni MG, et al. Synthesis and biological characterization of a new fluorescent probe for vesicular trafficking based on polyazamacrocycle derivative. Biological Chemistry. 2021; 402(10): 1225-1237. doi: 10.1515/hsz-2021-0204
Tayeb A, Amini E, Ghasemi S, et al. Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules. 2018; 23(10): 2684. doi: 10.3390/molecules23102684
Roman M, Winter WT. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules. 2004; 5(5): 1671-1677. doi: 10.1021/bm034519
Čolić M, Tomić S, Bekić M. Immunological aspects of nanocellulose. Immunology Letters. 2020; 222: 80-89. doi: 10.1016/j.imlet.2020.04.004
Pereira MM, Raposo NRB, Brayner R, et al. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology. 2013; 24(7): 075103. doi: 10.1088/0957-4484/24/7/075103
Oh JH, Lee JT, Yang ES, et al. The coffee diterpene kahweol induces apoptosis in human leukemia U937 cells through down-regulation of Akt phosphorylation and activation of JNK. Apoptosis. 2009; 14(11): 1378-1386. doi: 10.1007/s10495-009-0407-x
Jabir NR, Islam MT, Tabrez S, et al. An insight towards anticancer potential of major coffee constituents. BioFactors. 2018; 44(4): 315-326. doi: 10.1002/biof.1437
Prasanthi JRP, Dasari B, Marwarha G, et al. Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radical Biology and Medicine. 2010; 49(7): 1212-1220. doi: 10.1016/j.freeradbiomed.2010.07.007
Ko J, Kim JY, Kim J, et al. Anti-oxidative and anti-adipogenic effects of caffeine in an in vitro model of Graves’ orbitopathy. Endocrine Journal. 2020; 67(4): 439-447. doi: 10.1507/endocrj.ej19-0521
Silvério A dos SD, Pereira RGFA, Duarte SM da S, et al. Coffee beverage reduces ROS production and does not affect the organism s response against Candida albicans. Revista de Ciências Farmacêutica Básica e Aplicadas—RCFBA. 2020; 41. doi: 10.4322/2179-443x.0684
Castaldo L, Toriello M, Sessa R, et al. Antioxidant and Anti-Inflammatory Activity of Coffee Brew Evaluated after Simulated Gastrointestinal Digestion. Nutrients. 2021; 13(12): 4368. doi: 10.3390/nu13124368
To EE, Erlich JR, Liong F, et al. Therapeutic Targeting of Endosome and Mitochondrial Reactive Oxygen Species Protects Mice from Influenza Virus Morbidity. Frontiers in Pharmacology. 2022; 13: 870156. doi: 10.3389/fphar.2022.870156
Zeng Q, Ma X, Song Y, et al. Targeting regulated cell death in tumor nanomedicines. Theranostics. 2022; 12(2): 817-841. doi: 10.7150/thno.67932
Amatori S, Ambrosi G, Borgogelli E, et al. Modulating the Sensor Response to Halide Using NBD-Based Azamacrocycles. Inorganic Chemistry. 2014; 53(9): 4560-4569. doi: 10.1021/ic5001649
Miękus N, Marszałek K, Podlacha M, et al. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules. 2020; 25(17): 3804. doi: 10.3390/molecules25173804
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. Journal of Agricultural and Food Chemistry. 2020; 68(45): 12505-12526. doi: 10.1021/acs.jafc.0c05002
Cano-Marquina A, Tarín JJ, Cano A. The impact of coffee on health. Maturitas. 2013; 75(1): 7-21. doi: 10.1016/j.maturitas.2013.02.002
Montanari M, Guescini M, Gundogdu O, et al. Extracellular Vesicles from Campylobacter jejuni CDT-Treated Caco-2 Cells Inhibit Proliferation of Tumour Intestinal Caco-2 Cells and Myeloid U937 Cells: Detailing the Global Cell Response for Potential Application in Anti-Tumour Strategies. International Journal of Molecular Sciences. 2022; 24(1): 487. doi: 10.3390/ijms24010487
Hickey TE, Majam G, Guerry P. Intracellular Survival of Campylobacter jejuni in Human Monocytic Cells and Induction of Apoptotic Death by Cytholethal Distending Toxin. Infection and Immunity. 2005; 73(8): 5194-5197. doi: 10.1128/iai.73.8.5194-5197.2005
Alzheimer M, Svensson SL, König F, et al. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLOS Pathogens. 2020; 16(2): e1008304. doi: 10.1371/journal.ppat.1008304
Martin OCB, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins. 2020; 12(2): 63. doi: 10.3390/toxins12020063
Balta I, Butucel E, Stef L, et al. Anti-Campylobacter Probiotics: Latest Mechanistic Insights. Foodborne Pathogens and Disease. 2022; 19(10): 693-703. doi: 10.1089/fpd.2022.0039
Athinarayanan J, Alshatwi AA, Subbarayan Periasamy V. Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydrate Polymers. 2020; 235: 115961. doi: 10.1016/j.carbpol.2020.115961
Ventura C, Pinto F, Lourenço AF, et al. On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose. 2020; 27(10): 5509-5544. doi: 10.1007/s10570-020-03176-9
Wang X, Qiu Y, Wang M, et al. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. International Journal of Nanomedicine. 2020; 15: 9447-9467. doi: 10.2147/ijn.s274289
López-Galilea I, De Peña MP, Cid C. Correlation of Selected Constituents with the Total Antioxidant Capacity of Coffee Beverages: Influence of the Brewing Procedure. Journal of Agricultural and Food Chemistry. 2007; 55(15): 6110-6117. doi: 10.1021/jf070779x
Acidri R, Sawai Y, Sugimoto Y, et al. Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans. Antioxidants. 2020; 9(2): 93. doi: 10.3390/antiox9020093
Andueza S, Cid C, Cristina Nicoli M. Comparison of antioxidant and pro-oxidant activity in coffee beverages prepared with conventional and “Torrefacto” coffee. LWT—Food Science and Technology. 2004; 37(8): 893-897. doi: 10.1016/j.lwt.2004.04.004
Cui WQ, Wang ST, Pan D, et al. Caffeine and its main targets of colorectal cancer. World Journal of Gastrointestinal Oncology. 2020; 12(2): 149-172. doi: 10.4251/wjgo.v12.i2.149
Lee C. Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clinica Chimica Acta. 2000; 295(1-2): 141-154. doi: 10.1016/S0009-8981(00)00201-1
Soares MJ, Sampaio GR, Guizellini GM, et al. Regular and decaffeinated espresso coffee capsules: Unravelling the bioaccessibility of phenolic compounds and their antioxidant properties in milk model system upon in vitro digestion. LWT. 2021; 135: 110255. doi: 10.1016/j.lwt.2020.110255
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death & Differentiation. 2014; 22(3): 377-388. doi: 10.1038/cdd.2014.150
Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration. 2016; 11(1). doi: 10.1186/s13024-016-0140-1
Farias-Pereira R, Park CS, Park Y. Mechanisms of action of coffee bioactive components on lipid metabolism. Food Science and Biotechnology. 2019; 28(5): 1287-1296. doi: 10.1007/s10068-019-00662-0
Al-Bari MdAA, Ito Y, Ahmed S, et al. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. International Journal of Molecular Sciences. 2021; 22(18): 9807. doi: 10.3390/ijms22189807
Silva FAGS, Dourado F, Gama M, et al. Nanocellulose Bio-Based Composites for Food Packaging. Nanomaterials. 2020; 10(10): 2041. doi: 10.3390/nano10102041
Bhattacharya K, Kiliç G, Costa PM, Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology. 2017; 11(6): 809-826. doi: 10.1080/17435390.2017.1363309
Stoudmann N, Schmutz M, Hirsch C, et al. Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology. 2020; 14(9): 1241-1257. doi: 10.1080/17435390.2020.1814440
Hiura TS, Li N, Kaplan R, et al. The Role of a Mitochondrial Pathway in the Induction of Apoptosis by Chemicals Extracted from Diesel Exhaust Particles. The Journal of Immunology. 2000; 165(5): 2703-2711. doi: 10.4049/jimmunol.165.5.2703
Teodoro JS, Simões AM, Duarte FV, et al. Assessment of the toxicity of silver nanoparticles in vitro: A mitochondrial perspective. Toxicology in Vitro. 2011; 25(3): 664-670. doi: 10.1016/j.tiv.2011.01.004
Copyright (c) 2024 Daniele Lopez, Giovanna Panza, Pietro Gobbi, Michele Guescini, Laura Valentini, Stefano Papa, Vieri Fusi, Eleonora Macedi, Daniele Paderni, Mariele Montanari, Barbara Canonico