QCA-based design of polar encoder circuit
Vol 7, Issue 2, 2024
VIEWS - 356 (Abstract)
Abstract
In the last few decades, nano-electronic devices have been manufactured using VLSI technology. Over the past four decades, IC technology has been growing by using CMOS technology successfully, but this CMOS technology has a scaling limitation. To overcome this scaling limitation, QCA (quantum dot cellular automata) emerges as an alternative. This work is the implementation of the design of a polar encoder using QCA technology. This design is a single-layered and even bottom-up approach technique. The Polar code is more efficient and has less energy dissipation compared to the turbo code and conventional codes (CC). This design explores (8:4). A Polar encoder is designed to have fewer cells and area compared to the turbo encoder and conventional encoder. The proposed design is implemented using the QCA designer tool.
Keywords
Full Text:
PDFReferences
1. Tirthji Maharaja Jagadguru SSBK. Vedic Mathematics. Motilal Banarsidas; 1986.
2. Van Loan CF. The ubiquitous Kronecker product. Journal of computational and applied mathematics. 2000; 123(1-2): 85-100. doi: 10.1016/S0377-0427(00)00393-9
3. Hashemi S, Navi K. New robust QCA D flip flop and memory structures. Microelectronics Journal. 2012; 43(12): 929-940. doi: 10.1016/j.mejo.2012.10.007
4. Das S, De D. Nanocommunication using QCA: A data path selector cum router for efficient channel utilization. In: Proceedings of the 2012 International Conference on Radar, Communication and Computing (ICRCC); 21-22 December 2012; Tiruvannamalai, India. pp. 43-47. doi: 10.1109/icrcc.2012.6450545
5. Sardinha LHB, Costa AMM, Neto OPV, et al. NanoRouter: A Quantum-dot Cellular Automata Design. IEEE Journal on Selected Areas in Communications. 2013; 31(12): 825-834. doi: 10.1109/jsac.2013.sup2.12130015
6. Sayedsalehi, Samira, Moaiyeri MH, and Navi K. Design of efficient and testable n-input logic gates in quantum-dot cellular automata. Journal of Computational and Theoretical Nanoscience. 2013; 10(10): 2347-2353.
7. Yao F, Zein-Sabatto MS, Shao G, et al. Nanosensor Data Processor in Quantum-Dot Cellular Automata. Journal of Nanotechnology. 2014; 2014: 1-14. doi: 10.1155/2014/259869
8. Kamaraj A, Abinaya, Ramya S. Design of router using Reversible Logic in Quantum Cellular Automata. In: Proceedings of the 2014 International Conference on Communication and Network Technologies; 18-19 December 2014; Sivakasi, India. pp. 249-253. doi: 10.1109/cnt.2014.7062764
9. Kianpour M, Sabbaghi-Nadooshan R, Navi K. A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. Journal of Computer and System Sciences. 2014; 80(7): 1404-1414. doi: 10.1016/j.jcss.2014.04.012
10. Angizi S, Moaiyeri MH, Farrokhi S, et al. Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocessors and Microsystems. 2015; 39(7): 512-520. doi: 10.1016/j.micpro.2015.07.011
11. Zhang M, Cai L, Yang X, et al. Design and Simulation of Turbo Encoder in Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology. 2015; 14(5): 820-828. doi: 10.1109/tnano.2015.2449663
12. Sheikhfaal S, Angizi S, Sarmadi S, et al. Designing efficient QCA logical circuits with power dissipation analysis. Microelectronics Journal. 2015; 46(6): 462-471. doi: 10.1016/j.mejo.2015.03.016
13. Sayedsalehi S, Rahimi Azghadi M, Angizi S, et al. Restoring and non-restoring array divider designs in Quantum-dot Cellular Automata. Information Sciences. 2015; 311: 86-101. doi: 10.1016/j.ins.2015.03.030
14. Ahmad F, Bhat GM, Khademolhosseini H, et al. Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. Journal of Computational Science. 2016; 16: 8-15. doi: 10.1016/j.jocs.2016.02.005
15. Kalogeiton VS, Papadopoulos DP, Liolis O, et al. Programmable Crossbar Quantum-Dot Cellular Automata Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2017; 36(8): 1367-1380. doi: 10.1109/tcad.2016.2618869
16. Das JC, De D. User Authentication Based on Quantum-Dot Cellular Automata Using Reversible Logic for Secure Nanocommunication. Arabian Journal for Science and Engineering. 2015; 41(3): 773-784. doi: 10.1007/s13369-015-1870-z
17. Das JC, De D. Circuit switching with Quantum-Dot Cellular Automata. Nano Communication Networks. 2017; 14: 16-28. doi: 10.1016/j.nancom.2017.09.002
18. Das JC, De D. Nanocommunication network design using QCA reversible crossbar switch. Nano Communication Networks. 2017; 13: 20-33. doi: 10.1016/j.nancom.2017.06.003
19. Abutaleb MM. Robust and efficient quantum-dot cellular automata synchronous counters. Microelectronics Journal. 2017; 61: 6-14. doi: 10.1016/j.mejo.2016.12.013
20. Chandra Das J, De D. QCA based secure nanocommunication block cipher design based on electronic code book. Malaysian Journal of Computer Science. 2018; 31(2): 130-142. doi: 10.22452/mjcs.vol31no2.3
21. Zhang Y, Xie G, Cheng X, et al. The Implementation of I/O Interface in Quantum-dot Cellular Automata. Optik. 2018; 166: 177-188. doi: 10.1016/j.ijleo.2018.04.020
22. Azimi S, Angizi S, Moaiyeri MH. Efficient and Robust SRAM Cell Design Based on Quantum-Dot Cellular Automata. ECS Journal of Solid State Science and Technology. 2018; 7(3): Q38-Q45. doi: 10.1149/2.0281803jss
23. Zhang Y, Xie G, Han J. Serial concatenated convolutional code encoder in quantum-dot cellular automata. Nano Communication Networks. 2019; 22: 100268. doi: 10.1016/j.nancom.2019.100268
24. Premananda BSC, Skanda, Srivatsa B. Area and energy efficient QCA based decoder. In: Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES); 8-10 July 2021; Coimbatre, India. pp. 7-12. doi: 10.1109/ICCES51350.2021.9489011
25. Teen YPA, Subha M, Shabeer SH, et al. Programmable multiplier circuit designed for quantum-dot cellular automata devices. Materials Today: Proceedings. 2021; 37: 1295-1300. doi: 10.1016/j.matpr.2020.06.464
26. Dehbozorgi L, Sabbaghi-Nadooshan R, Kashaninia A. Realization of processing-in-memory using binary and ternary quantum-dot cellular automata. The Journal of Supercomputing. 2021; 78(5): 6846-6874. doi: 10.1007/s11227-021-04152-1
27. Siddaiah, Premananda B, Megha P, Nagavika K. Compact and Energy Efficient QCA Based Hamming Encoder for Error Detection and Correction. Advances in Electrical and Electronic Engineering. 2023; 21(2): 120-126.
28. Vangala H, Hong Y, Viterbo E. Efficient Algorithms for Systematic Polar Encoding. IEEE Communications Letters. 2016; 20(1): 17-20. doi: 10.1109/lcomm.2015.2497220
29. Babar Z, Kaykac Egilmez ZB, Xiang L, et al. Polar Codes and Their Quantum-Domain Counterparts. IEEE Communications Surveys & Tutorials. 2020; 22(1): 123-155. doi: 10.1109/comst.2019.2937923
DOI: https://doi.org/10.24294/can.v7i2.6401
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sravan Kumar Vittapu, Ravichand Sankuru, Chepuri Rakshana, Beeradhar Mahesh, Amudha Naga Teja
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.