QCA-based design of polar encoder circuit

Sravan Kumar Vittapu, Ravichand Sankuru, Chepuri Rakshana, Beeradhar Mahesh, Amudha Naga Teja

Article ID: 6401
Vol 7, Issue 2, 2024

VIEWS - 32 (Abstract) 8 (PDF)

Abstract


In the last few decades, nano-electronic devices have been manufactured using VLSI technology. Over the past four decades, IC technology has been growing by using CMOS technology successfully, but this CMOS technology has a scaling limitation. To overcome this scaling limitation, QCA (quantum dot cellular automata) emerges as an alternative. This work is the implementation of the design of a polar encoder using QCA technology. This design is a single-layered and even bottom-up approach technique. The Polar code is more efficient and has less energy dissipation compared to the turbo code and conventional codes (CC). This design explores (8:4). A Polar encoder is designed to have fewer cells and area compared to the turbo encoder and conventional encoder. The proposed design is implemented using the QCA designer tool.



Keywords


ALU; CMOS; nano technology; polar encoder; QCA; VLSI

Full Text:

PDF


References


1. Tirthji Maharaja Jagadguru SSBK. Vedic Mathematics. Motilal Banarsidas, Varanasi, India; 1986.

2. Van Loan CF. The ubiquitous Kronecker product. Journal of computational and applied mathematics. 2000; 123(1-2): 85-100. doi: 10.1016/S0377-0427(00)00393-9

3. Hashemi S, Navi K. New robust QCA D flip flop and memory structures. Microelectronics Journal. 2012; 43(12): 929-940. doi: 10.1016/j.mejo.2012.10.007

4. Das S, De D. Nanocommunication using QCA: A data path selector cum router for efficient channel utilization. In: Proceedings of the 2012 International Conference on Radar, Communication and Computing (ICRCC); December 2012. doi: 10.1109/icrcc.2012.6450545

5. Sardinha LHB, Costa AMM, Neto OPV, et al. NanoRouter: A Quantum-dot Cellular Automata Design. IEEE Journal on Selected Areas in Communications. 2013; 31(12): 825-834. doi: 10.1109/jsac.2013.sup2.12130015

6. Sayedsalehi, Samira, Moaiyeri MH, and Navi K. Design of efficient and testable n-input logic gates in quantum-dot cellular automata. Journal of Computational and Theoretical Nanoscience. 2013; 10(10): 2347-2353.

7. Yao F, Zein-Sabatto MS, Shao G, et al. Nanosensor Data Processor in Quantum-Dot Cellular Automata. Journal of Nanotechnology. 2014; 2014: 1-14. doi: 10.1155/2014/259869

8. Kamaraj A, Abinaya, Ramya S. Design of router using Reversible Logic in Quantum Cellular Automata. In: Proceedings of the 2014 International Conference on Communication and Network Technologies; 2014. doi: 10.1109/cnt.2014.7062764

9. Kianpour M, Sabbaghi-Nadooshan R, Navi K. A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. Journal of Computer and System Sciences. 2014; 80(7): 1404-1414. doi: 10.1016/j.jcss.2014.04.012

10. Angizi S, Moaiyeri MH, Farrokhi S, et al. Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocessors and Microsystems. 2015; 39(7): 512-520. doi: 10.1016/j.micpro.2015.07.011

11. Zhang M, Cai L, Yang X, et al. Design and Simulation of Turbo Encoder in Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology. 2015; 14(5): 820-828. doi: 10.1109/tnano.2015.2449663

12. Sheikhfaal S, Angizi S, Sarmadi S, et al. Designing efficient QCA logical circuits with power dissipation analysis. Microelectronics Journal. 2015; 46(6): 462-471. doi: 10.1016/j.mejo.2015.03.016

13. Sayedsalehi S, Rahimi Azghadi M, Angizi S, et al. Restoring and non-restoring array divider designs in Quantum-dot Cellular Automata. Information Sciences. 2015; 311: 86-101. doi: 10.1016/j.ins.2015.03.030

14. Ahmad F, Bhat GM, Khademolhosseini H, et al. Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. Journal of Computational Science. 2016; 16: 8-15. doi: 10.1016/j.jocs.2016.02.005

15. Kalogeiton VS, Papadopoulos DP, Liolis O, et al. Programmable Crossbar Quantum-Dot Cellular Automata Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2017; 36(8): 1367-1380. doi: 10.1109/tcad.2016.2618869

16. Das JC, De D. User Authentication Based on Quantum-Dot Cellular Automata Using Reversible Logic for Secure Nanocommunication. Arabian Journal for Science and Engineering. 2015; 41(3): 773-784. doi: 10.1007/s13369-015-1870-z

17. Das JC, De D. Circuit switching with Quantum-Dot Cellular Automata. Nano Communication Networks. 2017; 14: 16-28. doi: 10.1016/j.nancom.2017.09.002

18. Das JC, De D. Nanocommunication network design using QCA reversible crossbar switch. Nano Communication Networks. 2017; 13: 20-33. doi: 10.1016/j.nancom.2017.06.003

19. Abutaleb MM. Robust and efficient quantum-dot cellular automata synchronous counters. Microelectronics Journal. 2017; 61: 6-14. doi: 10.1016/j.mejo.2016.12.013

20. Chandra Das J, De D. QCA based secure nanocommunication block cipher design based on electronic code book. Malaysian Journal of Computer Science. 2018; 31(2): 130-142. doi: 10.22452/mjcs.vol31no2.3

21. Zhang Y, Xie G, Cheng X, et al. The Implementation of I/O Interface in Quantum-dot Cellular Automata. Optik. 2018; 166: 177-188. doi: 10.1016/j.ijleo.2018.04.020

22. Azimi S, Angizi S, Moaiyeri MH. Efficient and Robust SRAM Cell Design Based on Quantum-Dot Cellular Automata. ECS Journal of Solid State Science and Technology. 2018; 7(3): Q38-Q45. doi: 10.1149/2.0281803jss

23. Zhang Y, Xie G, Han J. Serial concatenated convolutional code encoder in quantum-dot cellular automata. Nano Communication Networks. 2019; 22: 100268. doi: 10.1016/j.nancom.2019.100268

24. Premananda BSC, Skanda, Srivatsa B. Area and energy efficient QCA based decoder. In: Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES); 2021.

25. Teen YPA, Subha M, Shabeer SH, et al. Programmable multiplier circuit designed for quantum-dot cellular automata devices. Materials Today: Proceedings. 2021; 37: 1295-1300. doi: 10.1016/j.matpr.2020.06.464

26. Dehbozorgi L, Sabbaghi-Nadooshan R, Kashaninia A. Realization of processing-in-memory using binary and ternary quantum-dot cellular automata. The Journal of Supercomputing. 2021; 78(5): 6846-6874. doi: 10.1007/s11227-021-04152-1

27. Siddaiah, Premananda B, Megha P, Nagavika K. Compact and Energy Efficient QCA Based Hamming Encoder for Error Detection and Correction. Advances in Electrical and Electronic Engineering. 2023; 21(2): 120-126.

28. Vangala H, Hong Y, Viterbo E. Efficient Algorithms for Systematic Polar Encoding. IEEE Communications Letters. 2016; 20(1): 17-20. doi: 10.1109/lcomm.2015.2497220

29. Babar Z, Kaykac Egilmez ZB, Xiang L, et al. Polar Codes and Their Quantum-Domain Counterparts. IEEE Communications Surveys & Tutorials. 2020; 22(1): 123-155. doi: 10.1109/comst.2019.2937923




DOI: https://doi.org/10.24294/can.v7i2.6401

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.