References
Wang Y, Wang X, Li X, et al. Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance. Advanced Functional Materials. 2019; 29(14). doi: 10.1002/adfm.201900326
Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries. Journal of the American Chemical Society. 2013; 135(43): 15966–15969. doi: 10.1021/ja405735d
Okubo M, Sugahara A, Kajiyama S, Yamada A. MXene as a Charge Storage Host. Accounts of Chemical Research. 2018; 51(3): 591–599. doi: 10.1021/acs.accounts.7b00481
Wang H, Wu Y, Yuan X, et al. Clay‐Inspired MXene‐Based Electrochemical Devices and Photo‐Electrocatalyst: State‐of‐the‐Art Progresses and Challenges. Advanced Materials. 2018; 30(12). doi: 10.1002/adma.201704561
An H, Habib T, Shah S, et al. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances. 2018; 4(3). doi: 10.1126/sciadv.aaq0118
Zhan C, Naguib M, Lukatskaya M, et al. Understanding the MXene Pseudocapacitance. The Journal of Physical Chemistry Letters. 2018; 9(6): 1223–1228. doi: 10.1021/acs.jpclett.8b00200
Xiong D, Li X, Bai Z, et al. Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage. Small. 2018; 14(17). doi: 10.1002/smll.201703419
Anasori B, Xie Y, Beidaghi M, et al. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano. 2015; 9(10): 9507–9516. doi: 10.1021/acsnano.5b03591
Wang Y, Wang Y. MXene ink printing of high‐performance micro‐supercapacitors. Carbon Neutralization. 2021. doi: 10.1002/cnl2.165
Badawi N, Bhuyan M, Luqman M, et al. MXenes the future of solid-state supercapacitors: Status, challenges, prospects, and applicatio. The Arabian Journal of Chemistry .2024; 10(66). doi: 10.1016/j.arabjc.2024.105866
Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano. 2016; 10(3): 3334–3341. doi: 10.1021/acsnano.5b06958
Vonlanthen D, Lazarev P, See KA, et al. A Stable Polyaniline‐Benzoquinone‐Hydroquinone Supercapacitor. Advanced Materials. 2014; 26(30): 5095–5100. doi: 10.1002/adma.201400966
Zhang C, Kremer MP, Seral‐Ascaso A, et al. Stamping of Flexible, Coplanar Micro‐Supercapacitors Using MXene Inks. Advanced Functional Materials. 2018; 28(9). doi: 10.1002/adfm.201705506
Kurra N, Ahmed B, Gogotsi Y, et al. MXene‐on‐Paper Coplanar Microsupercapacitors. Advanced Energy Materials. 2016; 6(24). doi: 10.1002/aenm.201601372
Xu S, Dall’Agnese Y, Wei G, et al. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy. 2018; 50: 479–488. doi: 10.1016/j.nanoen.2018.05.064
Zhang C, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications. 2019; 10(1). doi: 10.1038/s41467-019-09398-1
Jiao S, Zhou A, Wu M, et al. Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All‐Solid‐State Stretchable Micro‐Supercapacitor Arrays. Advanced Science. 2019; 6(12). doi: 10.1002/advs.201900529
Luo S, Xie L, Han F, et al. Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery. Advanced Functional Materials. 2019; 29(28). doi: 10.1002/adfm.201901336
Ma Y, Liu N, Li L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications. 2017; 8(1). doi: 10.1038/s41467-017-01136-9
Ronchi RM, Arantes JT, Santos SF. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International. 2019; 45(15): 18167–18188. doi: 10.1016/j.ceramint.2019.06.114
Naguib M, Mashtalir O, Carle J, et al. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012; 6(2): 1322–1331. doi: 10.1021/nn204153h
Naguib M, Mochalin VN, Barsoum MW, et al. 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials. Advanced Materials. 2013; 26(7): 992–1005. doi: 10.1002/adma.201304138
Hemanth NR, Kandasubramanian B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications: A review. Chemical Engineering Journal. 2020; 392: 123678. doi: 10.1016/j.cej.2019.123678
Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications. 2013; 4(1). doi: 10.1038/ncomms2664
Shekhirev M, Shuck CE, Sarycheva A, et al. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science. 2021; 120: 100757. doi: 10.1016/j.pmatsci.2020.100757
Jain A, Ong S, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials.2013; 1(1). doi: 10.1063/1.4812323/119685
Lim GP, Soon CF, Ma NL, et al. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environmental Research. 2021; 201: 111592. doi: 10.1016/j.envres.2021.111592
Shahmoradi S, Mirshafiei M, Zare I, et al. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Tissue Engineering Applications. Scrivener Publishing LLC. 2024; 9781119904847. doi:10.1002/9781119905110.ch17
Sana SS, Santhamoorthy M, Haldar R, et al. Recent advances on MXene-based hydrogels for antibacterial and drug delivery applications. Process Biochemistry. 2023; 132: 200–220. doi: 10.1016/j.procbio.2023.06.022
Alyasi H, Wahib S, Gomez TA, et al. The power of MXene-based materials for emerging contaminant removal from water—A review. Desalinction. 2024, 117913. doi: 10.1016/j.desal.2024.117913
Ibrahim KB, Shifa TA, Zorzi S, et al. Emerging 2D materials beyond mxenes and TMDs: Transition metal carbo-chalcogenides. Progress in Materials Science. 2024, 101287. doi: 10.1016/j.pmatsci.2024.101287
Naguib M, Kurtoglu M, Presser V, et al. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials. 2011; 23(37): 4248–4253. doi: 10.1002/adma.201102306
Rafieerad A, Yan W, Sequiera GL, et al. Application of Ti3C2 MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Advanced Healthcare Materials. 2019; 8(16). doi: 10.1002/adhm.201900569
Chen K, Chen Y, Deng Q, et al. Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Materials Letters. 2018; 229: 114–117. doi: 10.1016/j.matlet.2018.06.063
Pan S, Yin J, Yu L, et al. 2D MXene‐Integrated 3D‐Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction. Advanced Science. 2019; 7(2). doi: 10.1002/advs.201901511
Cui Y, Liu M, Huang H, et al. A novel one-step strategy for preparation of Fe3O4-loaded Ti3C2 MXenes with high efficiency for removal organic dyes. Ceramics International. 2020; 46(8): 11593–11601. doi: 10.1016/j.ceramint.2020.01.188
Wychowaniec JK, Litowczenko J, Tadyszak K, et al. Unique cellular network formation guided by heterostructures based on reduced graphene oxide—Ti3C2Tx MXene hydrogels. Acta Biomaterialia. 2020; 115: 104–115. doi: 10.1016/j.actbio.2020.08.010
Wang H, Sun F, Zhao Y, et al. A highly luminescent organic crystal with the well-balanced charge transport property: The role of cyano-substitution in the terminal phenyl unit of distyrylbenzene. Organic Electronics. 2016; 28: 287–293. doi: 10.1016/j.orgel.2015.11.008
Rastin H, Zhang B, Mazinani A, et al. 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Nanoscale. 2020; 12(30): 16069–16080. doi: 10.1039/d0nr02581j
He J, Yang J, Jiang F, et al. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac. Chemosphere. 2020; 258: 127339. doi: 10.1016/j.chemosphere.2020.127339
Song H, Du R, Wang Y, et al. Anchoring single atom cobalt on two-dimensional MXene for activation of peroxymonosulfate. Applied Catalysis B: Environmental. 2021; 286: 119898. doi: 10.1016/j.apcatb.2021.119898
Ma Y, Xiong D, Lv X, et al. Rapid and long-lasting acceleration of zero-valent iron nanoparticles@Ti3C2-based MXene/peroxymonosulfate oxidation with bi-active centers toward ranitidine removal. Journal of Materials Chemistry A. 2021; 9(35): 19817–19833. doi: 10.1039/d1ta02046c
Wu Y, Xiong W, Wang Z, et al. Self-assembled MXene-based Schottky-junction upon Transition metal oxide for regulated tumor microenvironment and enhanced CDT/PTT/MRI activated by NIR irradiation. Chemical Engineering Journal. 2022; 427: 131925. doi: 10.1016/j.cej.2021.131925
Lee JB, Choi GH, Yoo PJ. Oxidized-co-crumpled multiscale porous architectures of MXene for high performance supercapacitors. Journal of Alloys and Compounds. 2021; 887: 161304. doi: 10.1016/j.jallcom.2021.161304
Xu S, Liu C, Jiang X, et al. Ti3C2 MXene promoted Fe3+/H2O2 fenton oxidation: Comparison of mechanisms under dark and visible light conditions. Journal of Hazardous Materials. 2023; 444: 130450. doi: 10.1016/j.jhazmat.2022.130450
Li Q, Wang X, Chen L, et al. Cu/Cu2O nanoparticles modified Ti3C2 MXene with in-situ formed TiO2-X for detection of hydrogen peroxide. Ceramics International. 2023; 49(6): 9632–9641. doi: 10.1016/j.ceramint.2022.11.133
Zhu F, Wang X, Yang X, et al. Reasonable design of an MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection. Analytical Methods. 2021; 13(22): 2512–2518. doi: 10.1039/d1ay00568e
Dekanovsky L, Huang H, Akir S, et al. Light‐Driven MXene‐Based Microrobots: Mineralization of Bisphenol A to CO2 and H2O. Small Methods. 2023; 7(8). doi: 10.1002/smtd.202201547
Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chemical Engineering Journal. 2020; 388: 124340. doi: 10.1016/j.cej.2020.124340
Dixit F, Zimmermann K, Dutta R, et al. Application of MXenes for water treatment and energy-efficient desalination: A review. Journal of Hazardous Materials. 2022; 423: 127050. doi: 10.1016/j.jhazmat.2021.127050
Rasool K, Pandey RP, Rasheed PA, et al. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today. 2019; 30: 80–102. doi: 10.1016/j.mattod.2019.05.017
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, et al. Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review. Journal of Water Process Engineering. 2022; 47: 102696. doi: 10.1016/j.jwpe.2022.102696
Ihsanullah I. Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Letters. 2020; 12(1). doi: 10.1007/s40820-020-0411-9
Saththasivam J, Wang K, Yiming W, et al. A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Advances. 2019; 9(29): 16296–16304. doi: 10.1039/c9ra02129a
Bao W, Tang X, Guo X, et al. Porous Cryo-Dried MXene for Efficient Capacitive Deionization. Joule. 2018; 2(4): 778–787. doi: 10.1016/j.joule.2018.02.018
Tang X, Guo X, Wu W, et al. 2D Metal Carbides and Nitrides (MXenes) as High‐Performance Electrode Materials for Lithium‐Based Batteries. Advanced Energy Materials. 2018; 8(33). doi: 10.1002/aenm.201801897
Deng D. Li‐ion batteries: basics, progress, and challenges. Energy Science & Engineering. 2015; 3(5): 385–418. doi: 10.1002/ese3.95
Goodenough JB. Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research. 2012; 46(5): 1053–1061. doi: 10.1021/ar2002705
Jyoti J, Singh BP, Sandhu M, et al. New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy & Fuels. 2022; 6(4): 971–1013. doi: 10.1039/d1se01681d
Wu X, Jovanović MR. Sparsity-promoting optimal control of systems with symmetries, consensus and synchronization networks. Systems & Control Letters. 2017; 103: 1–8. doi: 10.1016/j.sysconle.2017.02.007
Wang X, Kajiyama S, Iinuma H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications. 2015; 6(1). doi: 10.1038/ncomms7544
Zhang P, Wang D, Zhu Q, et al. Plate-to-Layer Bi2MoO6/MXene-Heterostructured Anode for Lithium-Ion Batteries. Nano-Micro Letters. 2019; 11(1): 01.doi: 10.1007/s40820-019-0312-y
Zou G, Zhang Z, Guo J, et al. Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High Rates. ACS Applied Materials & Interfaces. 2016; 8(34): 22280–22286. doi: 10.1021/acsami.6b08089
Tian Y, An Y, Xiong S, et al. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. Journal of Materials Chemistry A. 2019; 7(16): 9716–9725. doi: 10.1039/c9ta02233c
Jiang T, Xiong Q, Yang H, et al. Performance and application of Si/Ti3C2T x (MXene) composites in lithium-ion battery. Journal of Physics: Energy. 2023; 5(1): 014020. doi: 10.1088/2515-7655/acb6b4
Zhang W, Shi H, Wang D, et al. Three-dimensional Ti3C2 MXene@silicon@nitrogen-doped carbon foam for high performance self-standing lithium-ion battery anodes. Journal of Electroanalytical Chemistry. 2022; 921: 116664. doi: 10.1016/j.jelechem.2022.116664
Rojas Dávalos CA. Chemomechanical study of silicon composite anodes for lithium-ion batteries. Available online: https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/21155 (accessed on 15 December 2021).
Lei D, Liu N, Su T, et al. Roles of MXene in Pressure Sensing: Preparation, Composite Structure Design, and Mechanism. Advanced Materials. 2022; 34(52). doi: 10.1002/adma.202110608
Peng L, Zhu Y, Chen D, et al. Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries. Advanced Energy Materials. 2016; 6(11). doi: 10.1002/aenm.201600025
Tang X, Zhou D, Li P, et al. MXene‐Based Dendrite‐Free Potassium Metal Batteries. Advanced Materials. 2019; 32(4). doi: 10.1002/adma.201906739
Wang D, Ga Y, LiuY, et al. First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. Journal of Physical Chemistry C. 2017; 121(24): 13025. doi: 10.1021/acs.jpcc.7b03057
Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012; 41(2): 797–828. doi: 10.1039/c1cs15060j
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chemistry of Materials. 2017; 29(18): 7633–7644. doi: 10.1021/acs.chemmater.7b02847
Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy. 2017; 2(8). doi: 10.1038/nenergy.2017.105
Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Available online: https://www.nature.com/articles/nature13970 (accessed on 2 September 2023).
Pomerantseva E, Bonaccorso F, Feng X, et al. Energy storage: The future enabled by nanomaterials. Science. 2019; 366(6468). doi: 10.1126/science.aan8285
Couly C, Alhabeb M, Van Aken KL, et al. Asymmetric Flexible MXene‐Reduced Graphene Oxide Micro‐Supercapacitor. Advanced Electronic Materials. 2017; 4(1). doi: 10.1002/aelm.201700339
Rakhi RB, Ahmed B, Hedhili MN, et al. Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications. Chemistry of Materials. 2015; 27(15): 5314–5323. doi: 10.1021/acs.chemmater.5b01623
Wen Y, Rufford TE, Chen X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy. 2017; 38: 368–376. doi: 10.1016/j.nanoen.2017.06.009
Levitt AS, Alhabeb M, Hatter CB, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. Journal of Materials Chemistry A. 2019; 7(1): 269-277. doi: 10.1039/c8ta09810g
Kim SJ, Koh HJ, Ren CE, et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano. 2018; 12(2): 986–993. doi: 10.1021/acsnano.7b07460
Vasyukova IA, Zakharova OV, Kuznetsov DV, et al. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. Nanomaterials. 2022; 12(11): 1797. doi: 10.3390/nano12111797
Huang M, Gu Z, Zhang J, et al. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. Journal of Materials Chemistry B. 2021; 9(26): 5195–5220. doi: 10.1039/d1tb00410g
Huang H, Jiang R, Feng Y, et al. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale. 2020; 12(3): 1325–1338. doi: 10.1039/c9nr07616f
Lee E, VahidMohammadi A, Prorok BC, et al. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Applied Materials & Interfaces. 2017; 9(42): 37184–37190. doi: 10.1021/acsami.7b11055
Sinha A, Dhanjai, Zhao H, et al. MXene: An emerging material for sensing and biosensing. TrAC Trends in Analytical Chemistry. 2018; 105: 424–435. doi: 10.1016/j.trac.2018.05.021
Yin T, Cheng Y, Hou Y, et al. 3D Porous Structure in MXene/PANI Foam for a High‐Performance Flexible Pressure Sensor. Small. 2022; 18(48). doi: 10.1002/smll.202204806
Wang X, Lu J, Lu S, et al. Health monitoring of repaired composite structure using MXene sensor. Composites Communications. 2021; 27: 100850. doi: 10.1016/j.coco.2021.100850
George SM, Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceramics International. 2020; 46(7): 8522–8535. doi: 10.1016/j.ceramint.2019.12.257
Yang X, Zhang C, Deng D, et al. Multiple Stimuli‐Responsive MXene‐Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small. 2021; 18(5). doi: 10.1002/smll.202104368
Huang J, Li Z, Mao Y, et al. Progress and biomedical applications of MXenes. Nano Select. 2021; 2(8): 1480–1508. doi: 10.1002/nano.202000309
Mohajer F, Ziarani GM, Badiei A, et al. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines. 2022; 13(10): 1773. doi: 10.3390/mi13101773
Liu A, Liu Y, Liu G, et al. Engineering of surface modified Ti3C2Tx MXene based dually controlled drug release system for synergistic multi-therapies of cancer. Chemical Engineering Journal. 2022; 448: 137691. doi: 10.1016/j.cej.2022.137691
Dong Y, Li S, Li X, et al. Smart MXene/agarose hydrogel with photothermal property for controlled drug release. International Journal of Biological Macromolecules. 2021; 190: 693–699. doi: 10.1016/j.ijbiomac.2021.09.037
Zhang WJ, Li S, Vijayan V, et al. ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials. 2022; 12(24): 4392. doi: 10.3390/nano12244392
Wu Z, Shi J, Song P, et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery. International Journal of Biological Macromolecules. 2021; 183: 870–879. doi: 10.1016/j.ijbiomac.2021.04.164
Liu Y, Tian Y, Han Q, et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chemical Engineering Journal. 2021; 410: 128209. doi: 10.1016/j.cej.2020.128209
Nguyen VH, Nguyen BS, Hu C, et al. Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials. 2020; 10(4): 602. doi: 10.3390/nano10040602
Koyappayil A, Chavan SG, Mohammadniaei M, et al. β-Hydroxybutyrate dehydrogenase decorated MXene nanosheets for the amperometric determination of β-hydroxybutyrate. Microchimica Acta. 2020; 187(5). doi: 10.1007/s00604-020-04258-y
Zhang J, Fu Y, Mo A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. International Journal of Nanomedicine. 2019; 14: 10091–10103. doi: 10.2147/ijn.s227830
Huang J, Su J, Hou Z, et al. The cytocompatibility of Ti3C2Tx MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chemical Research in Toxicology. 2023; 36(3): 347–359. doi: 10.1021/acs.chemrestox.2c00154
Usman KAS, Yao Y, Bacal CJO, et al. Robust Biocompatible Fibers from Silk Fibroin Coated MXene Sheets. Advanced Materials Interfaces. 2023; 10(9). doi: 10.1002/admi.202201634
Neubertova V, Guselnikova O, Yamauchi Y, et al. Covalent functionalization of Ti3C2T MXene flakes with Gd-DTPA complex for stable and biocompatible MRI contrast agent. Chemical Engineering Journal. 2022; 446: 136939. doi: 10.1016/j.cej.2022.136939
Yang Z, Fu X, Ma D, et al. Growth Factor‐Decorated Ti3C2 MXene/MoS2 2D Bio‐Heterojunctions with Quad‐Channel Photonic Disinfection for Effective Regeneration of Bacteria‐Invaded Cutaneous Tissue. Small. 2021; 17(50). doi: 10.1002/smll.202103993
Scheibe B, Wychowaniec JK, Scheibe M, et al. Cytotoxicity Assessment of Ti-Al-C Based MAX Phases and Ti3C2Tx MXenes on Human Fibroblasts and Cervical Cancer Cells. ACS Biomaterials Science & Engineering. 2019; 5(12): 6557–6569. doi: 10.1021/acsbiomaterials.9b01476
Amini S, Salehi H, Setayeshmehr M, et al. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polymers for Advanced Technologies. 2021; 32(6): 2267–2289. doi: 10.1002/pat.5263
Katz-Demyanetz A, Koptyug A, Popov VV. In-situ Alloying as a Novel Methodology in Additive Manufacturing. In: Proceedings of the 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). 2020. doi: 10.1109/nap51477.2020.9309652
Yi S, Liu G, Liu Z, et al. Theoretical insights into nitrogen fixation on Ti2C and Ti2CO2 in a lithium-nitrogen battery. Journal of Materials Chemistry A. 2019; 7(34): 19950–19960. doi: 10.1039/c9ta06232g
Wei S, Wang C, Chen S, et al. Dial the Mechanism Switch of VN from Conversion to Intercalation toward Long Cycling Sodium‐Ion Battery. Advanced Energy Materials. 2020; 10(12). doi: 10.1002/aenm.201903712
Wang C, Wei S, Chen S, et al. Delaminating Vanadium Carbides for Zinc‐Ion Storage: Hydrate Precipitation and H+/Zn2+ Co‐Action Mechanism. Small Methods. 2019; 3(12). doi: 10.1002/smtd.201900495
Ming F, Liang H, Zhang W, et al. Porous MXenes enable high performance potassium ion capacitors. Nano Energy. 2019; 62: 853–860. doi: 10.1016/j.nanoen.2019.06.013
Zhong J, Sun W, Wei Q, et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nature Communications. 2018; 9(1). doi: 10.1038/s41467-018-05723-2
Copyright (c) 2024 Nujud Badawi M., M. Bhuyan, Namrata Agrawal, Yogesh Kumar