Synthesis, technological prospects and applications of MXene in biomedicine, supercapacitors and sensors: A review
Vol 7, Issue 2, 2024
VIEWS - 734 (Abstract) 361 (PDF)
Abstract
MXenes are one of the most important classes of materials discussed worldwide by many researchers of diverse fields for diverse applications in recent years. It is a nanomaterial with a wide range of applications due to its multiple forms and structures with fascinating properties, for example, high surface area and porosity, biocompatibility, ease of fictionalizing with various active chemical moieties, benefit of high metallic conductivity, activated metallic hydroxide sites, and sensitivity to moisture. MXenes have great chances for potential applications in environmental issues, water purification, biological applications, and energy storage devices and sensors. MXenes show great selectivity towards the absorption of heavy metals and a good capability to reduce chemical and biological pollutants present in the water. The present review article critically analyzed advancements in water purification using the adsorption and reduction abilities of MXenes and their composites. The mechanism of various procedures, important challenges, and associated problems using MXene and their composites are discussed in detail. The future research directions can be extracted from this article efficiently and comprehensively. The energy storage issues of rechargeable lithium-ion batteries, batteries other than lithium-ion batteries, and electrochemical capacitors are also discussed in detail.
Keywords
Full Text:
PDFReferences
1. Wang Y, Wang X, Li X, et al. Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance. Advanced Functional Materials. 2019; 29(14). doi: 10.1002/adfm.201900326
2. Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries. Journal of the American Chemical Society. 2013; 135(43): 15966–15969. doi: 10.1021/ja405735d
3. Okubo M, Sugahara A, Kajiyama S, Yamada A. MXene as a Charge Storage Host. Accounts of Chemical Research. 2018; 51(3): 591–599. doi: 10.1021/acs.accounts.7b00481
4. Wang H, Wu Y, Yuan X, et al. Clay‐Inspired MXene‐Based Electrochemical Devices and Photo‐Electrocatalyst: State‐of‐the‐Art Progresses and Challenges. Advanced Materials. 2018; 30(12). doi: 10.1002/adma.201704561
5. An H, Habib T, Shah S, et al. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances. 2018; 4(3). doi: 10.1126/sciadv.aaq0118
6. Zhan C, Naguib M, Lukatskaya M, et al. Understanding the MXene Pseudocapacitance. The Journal of Physical Chemistry Letters. 2018; 9(6): 1223–1228. doi: 10.1021/acs.jpclett.8b00200
7. Xiong D, Li X, Bai Z, et al. Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage. Small. 2018; 14(17). doi: 10.1002/smll.201703419
8. Anasori B, Xie Y, Beidaghi M, et al. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano. 2015; 9(10): 9507–9516. doi: 10.1021/acsnano.5b03591
9. Wang Y, Wang Y. MXene ink printing of high‐performance micro‐supercapacitors. Carbon Neutralization. 2021. doi: 10.1002/cnl2.165
10. Badawi N, Bhuyan M, Luqman M, et al. MXenes the future of solid-state supercapacitors: Status, challenges, prospects, and applicatio. The Arabian Journal of Chemistry .2024; 10(66). doi: 10.1016/j.arabjc.2024.105866
11. Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano. 2016; 10(3): 3334–3341. doi: 10.1021/acsnano.5b06958
12. Vonlanthen D, Lazarev P, See KA, et al. A Stable Polyaniline‐Benzoquinone‐Hydroquinone Supercapacitor. Advanced Materials. 2014; 26(30): 5095–5100. doi: 10.1002/adma.201400966
13. Zhang C, Kremer MP, Seral‐Ascaso A, et al. Stamping of Flexible, Coplanar Micro‐Supercapacitors Using MXene Inks. Advanced Functional Materials. 2018; 28(9). doi: 10.1002/adfm.201705506
14. Kurra N, Ahmed B, Gogotsi Y, et al. MXene‐on‐Paper Coplanar Microsupercapacitors. Advanced Energy Materials. 2016; 6(24). doi: 10.1002/aenm.201601372
15. Xu S, Dall’Agnese Y, Wei G, et al. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy. 2018; 50: 479–488. doi: 10.1016/j.nanoen.2018.05.064
16. Zhang C, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications. 2019; 10(1). doi: 10.1038/s41467-019-09398-1
17. Jiao S, Zhou A, Wu M, et al. Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All‐Solid‐State Stretchable Micro‐Supercapacitor Arrays. Advanced Science. 2019; 6(12). doi: 10.1002/advs.201900529
18. Luo S, Xie L, Han F, et al. Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery. Advanced Functional Materials. 2019; 29(28). doi: 10.1002/adfm.201901336
19. Ma Y, Liu N, Li L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications. 2017; 8(1). doi: 10.1038/s41467-017-01136-9
20. Ronchi RM, Arantes JT, Santos SF. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International. 2019; 45(15): 18167–18188. doi: 10.1016/j.ceramint.2019.06.114
21. Naguib M, Mashtalir O, Carle J, et al. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012; 6(2): 1322–1331. doi: 10.1021/nn204153h
22. Naguib M, Mochalin VN, Barsoum MW, et al. 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials. Advanced Materials. 2013; 26(7): 992–1005. doi: 10.1002/adma.201304138
23. Hemanth NR, Kandasubramanian B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications: A review. Chemical Engineering Journal. 2020; 392: 123678. doi: 10.1016/j.cej.2019.123678
24. Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications. 2013; 4(1). doi: 10.1038/ncomms2664
25. Shekhirev M, Shuck CE, Sarycheva A, et al. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science. 2021; 120: 100757. doi: 10.1016/j.pmatsci.2020.100757
26. Jain A, Ong S, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials.2013; 1(1). doi: 10.1063/1.4812323/119685
27. Lim GP, Soon CF, Ma NL, et al. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environmental Research. 2021; 201: 111592. doi: 10.1016/j.envres.2021.111592
28. Shahmoradi S, Mirshafiei M, Zare I, et al. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Tissue Engineering Applications. Scrivener Publishing LLC. 2024; 9781119904847. doi:10.1002/9781119905110.ch17
29. Sana SS, Santhamoorthy M, Haldar R, et al. Recent advances on MXene-based hydrogels for antibacterial and drug delivery applications. Process Biochemistry. 2023; 132: 200–220. doi: 10.1016/j.procbio.2023.06.022
30. Alyasi H, Wahib S, Gomez TA, et al. The power of MXene-based materials for emerging contaminant removal from water—A review. Desalinction. 2024, 117913. doi: 10.1016/j.desal.2024.117913
31. Ibrahim KB, Shifa TA, Zorzi S, et al. Emerging 2D materials beyond mxenes and TMDs: Transition metal carbo-chalcogenides. Progress in Materials Science. 2024, 101287. doi: 10.1016/j.pmatsci.2024.101287
32. Naguib M, Kurtoglu M, Presser V, et al. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials. 2011; 23(37): 4248–4253. doi: 10.1002/adma.201102306
33. Rafieerad A, Yan W, Sequiera GL, et al. Application of Ti3C2 MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Advanced Healthcare Materials. 2019; 8(16). doi: 10.1002/adhm.201900569
34. Chen K, Chen Y, Deng Q, et al. Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Materials Letters. 2018; 229: 114–117. doi: 10.1016/j.matlet.2018.06.063
35. Pan S, Yin J, Yu L, et al. 2D MXene‐Integrated 3D‐Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction. Advanced Science. 2019; 7(2). doi: 10.1002/advs.201901511
36. Cui Y, Liu M, Huang H, et al. A novel one-step strategy for preparation of Fe3O4-loaded Ti3C2 MXenes with high efficiency for removal organic dyes. Ceramics International. 2020; 46(8): 11593–11601. doi: 10.1016/j.ceramint.2020.01.188
37. Wychowaniec JK, Litowczenko J, Tadyszak K, et al. Unique cellular network formation guided by heterostructures based on reduced graphene oxide—Ti3C2Tx MXene hydrogels. Acta Biomaterialia. 2020; 115: 104–115. doi: 10.1016/j.actbio.2020.08.010
38. Wang H, Sun F, Zhao Y, et al. A highly luminescent organic crystal with the well-balanced charge transport property: The role of cyano-substitution in the terminal phenyl unit of distyrylbenzene. Organic Electronics. 2016; 28: 287–293. doi: 10.1016/j.orgel.2015.11.008
39. Rastin H, Zhang B, Mazinani A, et al. 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Nanoscale. 2020; 12(30): 16069–16080. doi: 10.1039/d0nr02581j
40. He J, Yang J, Jiang F, et al. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac. Chemosphere. 2020; 258: 127339. doi: 10.1016/j.chemosphere.2020.127339
41. Song H, Du R, Wang Y, et al. Anchoring single atom cobalt on two-dimensional MXene for activation of peroxymonosulfate. Applied Catalysis B: Environmental. 2021; 286: 119898. doi: 10.1016/j.apcatb.2021.119898
42. Ma Y, Xiong D, Lv X, et al. Rapid and long-lasting acceleration of zero-valent iron nanoparticles@Ti3C2-based MXene/peroxymonosulfate oxidation with bi-active centers toward ranitidine removal. Journal of Materials Chemistry A. 2021; 9(35): 19817–19833. doi: 10.1039/d1ta02046c
43. Wu Y, Xiong W, Wang Z, et al. Self-assembled MXene-based Schottky-junction upon Transition metal oxide for regulated tumor microenvironment and enhanced CDT/PTT/MRI activated by NIR irradiation. Chemical Engineering Journal. 2022; 427: 131925. doi: 10.1016/j.cej.2021.131925
44. Lee JB, Choi GH, Yoo PJ. Oxidized-co-crumpled multiscale porous architectures of MXene for high performance supercapacitors. Journal of Alloys and Compounds. 2021; 887: 161304. doi: 10.1016/j.jallcom.2021.161304
45. Xu S, Liu C, Jiang X, et al. Ti3C2 MXene promoted Fe3+/H2O2 fenton oxidation: Comparison of mechanisms under dark and visible light conditions. Journal of Hazardous Materials. 2023; 444: 130450. doi: 10.1016/j.jhazmat.2022.130450
46. Li Q, Wang X, Chen L, et al. Cu/Cu2O nanoparticles modified Ti3C2 MXene with in-situ formed TiO2-X for detection of hydrogen peroxide. Ceramics International. 2023; 49(6): 9632–9641. doi: 10.1016/j.ceramint.2022.11.133
47. Zhu F, Wang X, Yang X, et al. Reasonable design of an MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection. Analytical Methods. 2021; 13(22): 2512–2518. doi: 10.1039/d1ay00568e
48. Dekanovsky L, Huang H, Akir S, et al. Light‐Driven MXene‐Based Microrobots: Mineralization of Bisphenol A to CO2 and H2O. Small Methods. 2023; 7(8). doi: 10.1002/smtd.202201547
49. Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chemical Engineering Journal. 2020; 388: 124340. doi: 10.1016/j.cej.2020.124340
50. Dixit F, Zimmermann K, Dutta R, et al. Application of MXenes for water treatment and energy-efficient desalination: A review. Journal of Hazardous Materials. 2022; 423: 127050. doi: 10.1016/j.jhazmat.2021.127050
51. Rasool K, Pandey RP, Rasheed PA, et al. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today. 2019; 30: 80–102. doi: 10.1016/j.mattod.2019.05.017
52. Hojjati-Najafabadi A, Mansoorianfar M, Liang T, et al. Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review. Journal of Water Process Engineering. 2022; 47: 102696. doi: 10.1016/j.jwpe.2022.102696
53. Ihsanullah I. Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Letters. 2020; 12(1). doi: 10.1007/s40820-020-0411-9
54. Saththasivam J, Wang K, Yiming W, et al. A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Advances. 2019; 9(29): 16296–16304. doi: 10.1039/c9ra02129a
55. Bao W, Tang X, Guo X, et al. Porous Cryo-Dried MXene for Efficient Capacitive Deionization. Joule. 2018; 2(4): 778–787. doi: 10.1016/j.joule.2018.02.018
56. Tang X, Guo X, Wu W, et al. 2D Metal Carbides and Nitrides (MXenes) as High‐Performance Electrode Materials for Lithium‐Based Batteries. Advanced Energy Materials. 2018; 8(33). doi: 10.1002/aenm.201801897
57. Deng D. Li‐ion batteries: basics, progress, and challenges. Energy Science & Engineering. 2015; 3(5): 385–418. doi: 10.1002/ese3.95
58. Goodenough JB. Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research. 2012; 46(5): 1053–1061. doi: 10.1021/ar2002705
59. Jyoti J, Singh BP, Sandhu M, et al. New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy & Fuels. 2022; 6(4): 971–1013. doi: 10.1039/d1se01681d
60. Wu X, Jovanović MR. Sparsity-promoting optimal control of systems with symmetries, consensus and synchronization networks. Systems & Control Letters. 2017; 103: 1–8. doi: 10.1016/j.sysconle.2017.02.007
61. Wang X, Kajiyama S, Iinuma H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications. 2015; 6(1). doi: 10.1038/ncomms7544
62. Zhang P, Wang D, Zhu Q, et al. Plate-to-Layer Bi2MoO6/MXene-Heterostructured Anode for Lithium-Ion Batteries. Nano-Micro Letters. 2019; 11(1): 01.doi: 10.1007/s40820-019-0312-y
63. Zou G, Zhang Z, Guo J, et al. Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High Rates. ACS Applied Materials & Interfaces. 2016; 8(34): 22280–22286. doi: 10.1021/acsami.6b08089
64. Tian Y, An Y, Xiong S, et al. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. Journal of Materials Chemistry A. 2019; 7(16): 9716–9725. doi: 10.1039/c9ta02233c
65. Jiang T, Xiong Q, Yang H, et al. Performance and application of Si/Ti3C2T x (MXene) composites in lithium-ion battery. Journal of Physics: Energy. 2023; 5(1): 014020. doi: 10.1088/2515-7655/acb6b4
66. Zhang W, Shi H, Wang D, et al. Three-dimensional Ti3C2 MXene@silicon@nitrogen-doped carbon foam for high performance self-standing lithium-ion battery anodes. Journal of Electroanalytical Chemistry. 2022; 921: 116664. doi: 10.1016/j.jelechem.2022.116664
67. Rojas Dávalos CA. Chemomechanical study of silicon composite anodes for lithium-ion batteries. Available online: https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/21155 (accessed on 15 December 2021).
68. Lei D, Liu N, Su T, et al. Roles of MXene in Pressure Sensing: Preparation, Composite Structure Design, and Mechanism. Advanced Materials. 2022; 34(52). doi: 10.1002/adma.202110608
69. Peng L, Zhu Y, Chen D, et al. Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries. Advanced Energy Materials. 2016; 6(11). doi: 10.1002/aenm.201600025
70. Tang X, Zhou D, Li P, et al. MXene‐Based Dendrite‐Free Potassium Metal Batteries. Advanced Materials. 2019; 32(4). doi: 10.1002/adma.201906739
71. Wang D, Ga Y, LiuY, et al. First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. Journal of Physical Chemistry C. 2017; 121(24): 13025. doi: 10.1021/acs.jpcc.7b03057
72. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012; 41(2): 797–828. doi: 10.1039/c1cs15060j
73. Alhabeb M, Maleski K, Anasori B, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chemistry of Materials. 2017; 29(18): 7633–7644. doi: 10.1021/acs.chemmater.7b02847
74. Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy. 2017; 2(8). doi: 10.1038/nenergy.2017.105
75. Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Available online: https://www.nature.com/articles/nature13970 (accessed on 2 September 2023).
76. Pomerantseva E, Bonaccorso F, Feng X, et al. Energy storage: The future enabled by nanomaterials. Science. 2019; 366(6468). doi: 10.1126/science.aan8285
77. Couly C, Alhabeb M, Van Aken KL, et al. Asymmetric Flexible MXene‐Reduced Graphene Oxide Micro‐Supercapacitor. Advanced Electronic Materials. 2017; 4(1). doi: 10.1002/aelm.201700339
78. Rakhi RB, Ahmed B, Hedhili MN, et al. Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications. Chemistry of Materials. 2015; 27(15): 5314–5323. doi: 10.1021/acs.chemmater.5b01623
79. Wen Y, Rufford TE, Chen X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy. 2017; 38: 368–376. doi: 10.1016/j.nanoen.2017.06.009
80. Levitt AS, Alhabeb M, Hatter CB, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. Journal of Materials Chemistry A. 2019; 7(1): 269-277. doi: 10.1039/c8ta09810g
81. Kim SJ, Koh HJ, Ren CE, et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano. 2018; 12(2): 986–993. doi: 10.1021/acsnano.7b07460
82. Vasyukova IA, Zakharova OV, Kuznetsov DV, et al. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. Nanomaterials. 2022; 12(11): 1797. doi: 10.3390/nano12111797
83. Huang M, Gu Z, Zhang J, et al. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. Journal of Materials Chemistry B. 2021; 9(26): 5195–5220. doi: 10.1039/d1tb00410g
84. Huang H, Jiang R, Feng Y, et al. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale. 2020; 12(3): 1325–1338. doi: 10.1039/c9nr07616f
85. Lee E, VahidMohammadi A, Prorok BC, et al. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Applied Materials & Interfaces. 2017; 9(42): 37184–37190. doi: 10.1021/acsami.7b11055
86. Sinha A, Dhanjai, Zhao H, et al. MXene: An emerging material for sensing and biosensing. TrAC Trends in Analytical Chemistry. 2018; 105: 424–435. doi: 10.1016/j.trac.2018.05.021
87. Yin T, Cheng Y, Hou Y, et al. 3D Porous Structure in MXene/PANI Foam for a High‐Performance Flexible Pressure Sensor. Small. 2022; 18(48). doi: 10.1002/smll.202204806
88. Wang X, Lu J, Lu S, et al. Health monitoring of repaired composite structure using MXene sensor. Composites Communications. 2021; 27: 100850. doi: 10.1016/j.coco.2021.100850
89. George SM, Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceramics International. 2020; 46(7): 8522–8535. doi: 10.1016/j.ceramint.2019.12.257
90. Yang X, Zhang C, Deng D, et al. Multiple Stimuli‐Responsive MXene‐Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small. 2021; 18(5). doi: 10.1002/smll.202104368
91. Huang J, Li Z, Mao Y, et al. Progress and biomedical applications of MXenes. Nano Select. 2021; 2(8): 1480–1508. doi: 10.1002/nano.202000309
92. Mohajer F, Ziarani GM, Badiei A, et al. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines. 2022; 13(10): 1773. doi: 10.3390/mi13101773
93. Liu A, Liu Y, Liu G, et al. Engineering of surface modified Ti3C2Tx MXene based dually controlled drug release system for synergistic multi-therapies of cancer. Chemical Engineering Journal. 2022; 448: 137691. doi: 10.1016/j.cej.2022.137691
94. Dong Y, Li S, Li X, et al. Smart MXene/agarose hydrogel with photothermal property for controlled drug release. International Journal of Biological Macromolecules. 2021; 190: 693–699. doi: 10.1016/j.ijbiomac.2021.09.037
95. Zhang WJ, Li S, Vijayan V, et al. ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials. 2022; 12(24): 4392. doi: 10.3390/nano12244392
96. Wu Z, Shi J, Song P, et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery. International Journal of Biological Macromolecules. 2021; 183: 870–879. doi: 10.1016/j.ijbiomac.2021.04.164
97. Liu Y, Tian Y, Han Q, et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chemical Engineering Journal. 2021; 410: 128209. doi: 10.1016/j.cej.2020.128209
98. Nguyen VH, Nguyen BS, Hu C, et al. Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials. 2020; 10(4): 602. doi: 10.3390/nano10040602
99. Koyappayil A, Chavan SG, Mohammadniaei M, et al. β-Hydroxybutyrate dehydrogenase decorated MXene nanosheets for the amperometric determination of β-hydroxybutyrate. Microchimica Acta. 2020; 187(5). doi: 10.1007/s00604-020-04258-y
100. Zhang J, Fu Y, Mo A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. International Journal of Nanomedicine. 2019; 14: 10091–10103. doi: 10.2147/ijn.s227830
101. Huang J, Su J, Hou Z, et al. The cytocompatibility of Ti3C2Tx MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chemical Research in Toxicology. 2023; 36(3): 347–359. doi: 10.1021/acs.chemrestox.2c00154
102. Usman KAS, Yao Y, Bacal CJO, et al. Robust Biocompatible Fibers from Silk Fibroin Coated MXene Sheets. Advanced Materials Interfaces. 2023; 10(9). doi: 10.1002/admi.202201634
103. Neubertova V, Guselnikova O, Yamauchi Y, et al. Covalent functionalization of Ti3C2T MXene flakes with Gd-DTPA complex for stable and biocompatible MRI contrast agent. Chemical Engineering Journal. 2022; 446: 136939. doi: 10.1016/j.cej.2022.136939
104. Yang Z, Fu X, Ma D, et al. Growth Factor‐Decorated Ti3C2 MXene/MoS2 2D Bio‐Heterojunctions with Quad‐Channel Photonic Disinfection for Effective Regeneration of Bacteria‐Invaded Cutaneous Tissue. Small. 2021; 17(50). doi: 10.1002/smll.202103993
105. Scheibe B, Wychowaniec JK, Scheibe M, et al. Cytotoxicity Assessment of Ti-Al-C Based MAX Phases and Ti3C2Tx MXenes on Human Fibroblasts and Cervical Cancer Cells. ACS Biomaterials Science & Engineering. 2019; 5(12): 6557–6569. doi: 10.1021/acsbiomaterials.9b01476
106. Amini S, Salehi H, Setayeshmehr M, et al. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polymers for Advanced Technologies. 2021; 32(6): 2267–2289. doi: 10.1002/pat.5263
107. Katz-Demyanetz A, Koptyug A, Popov VV. In-situ Alloying as a Novel Methodology in Additive Manufacturing. In: Proceedings of the 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). 2020. doi: 10.1109/nap51477.2020.9309652
108. Yi S, Liu G, Liu Z, et al. Theoretical insights into nitrogen fixation on Ti2C and Ti2CO2 in a lithium-nitrogen battery. Journal of Materials Chemistry A. 2019; 7(34): 19950–19960. doi: 10.1039/c9ta06232g
109. Wei S, Wang C, Chen S, et al. Dial the Mechanism Switch of VN from Conversion to Intercalation toward Long Cycling Sodium‐Ion Battery. Advanced Energy Materials. 2020; 10(12). doi: 10.1002/aenm.201903712
110. Wang C, Wei S, Chen S, et al. Delaminating Vanadium Carbides for Zinc‐Ion Storage: Hydrate Precipitation and H+/Zn2+ Co‐Action Mechanism. Small Methods. 2019; 3(12). doi: 10.1002/smtd.201900495
111. Ming F, Liang H, Zhang W, et al. Porous MXenes enable high performance potassium ion capacitors. Nano Energy. 2019; 62: 853–860. doi: 10.1016/j.nanoen.2019.06.013
112. Zhong J, Sun W, Wei Q, et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nature Communications. 2018; 9(1). doi: 10.1038/s41467-018-05723-2
DOI: https://doi.org/10.24294/can.v7i2.6348
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nujud Badawi M., M. Bhuyan, Namrata Agrawal, Yogesh Kumar
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.