Green recovery of NaF-Na2CO3-NaCl ternary fluxing agent from aluminum dross

Mostafa Mahinroosta, Ali Allahverdi

Article ID: 5593
Vol 7, Issue 1, 2024

VIEWS - 244 (Abstract) 174 (PDF)

Abstract


The present study deliberates the recovery of sodium fluoride (NaF)-natrite (Na2CO3)-sodium chloride (NaCl) ternary fluxing agent from hazardous aluminum dross waste using three types of heating methods, including direct heating on a hotplate, heating by a drying oven, and microwave heating. Deionized water was used as a green solvent for the recovery experiments. Investigating the effects of time and temperature on recovery percentage showed that a recovery percentage of around 96.5% can be achieved under time and temperature of 90 min and 95 ℃, respectively. The recovered fluxing agent salt was characterized by XRD, FTIR spectroscopy, FESEM, and energy dispersive X-ray spectroscopy (EDS) elemental analysis. Rietveld fitting analysis of phases detected in the XRD patterns showed that the recovered fluxing agent contained 74–81 wt.% NaF, 8–11 wt.% NaCl, and 11–14.7 wt.% Na2CO3. The FESEM micrographs revealed that the retrieved salts were in nano scale. The recovered fluxing agent showed different morphologies including needle-like, round shape, and a mixture of both, corresponding to microwave, drying oven, and hotplate heating methods, respectively. The nano-needles exhibited diameter of the tip and base in the range of 39–60 nm and 50–103 nm, respectively.

Keywords


waste; sodium fluoride; needle-like; microwave-assisted; nanostructure

Full Text:

PDF


References


1. Xiao Y, Reuter MA, Boin UDO. Aluminium Recycling and Environmental Issues of Salt Slag Treatment. Journal of Environmental Science and Health, Part A. 2005; 40(10): 1861-1875. doi: 10.1080/10934520500183824

2. Tsakiridis PE, Oustadakis P, Agatzini-Leonardou S. Aluminium recovery during black dross hydrothermal treatment. Journal of Environmental Chemical Engineering. 2013; 1(1-2): 23-32. doi: 10.1016/j.jece.2013.03.004

3. Dash B, Das BR, Tripathy BC, et al. Acid dissolution of alumina from waste aluminium dross. Hydrometallurgy. 2008; 92(1-2): 48-53. doi: 10.1016/j.hydromet.2008.01.006

4. Sarker MdSR, Alam MdZ, Qadir MdR, et al. Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process. International Journal of Minerals, Metallurgy, and Materials. 2015; 22(4): 429-436. doi: 10.1007/s12613-015-1090-2

5. Unlü N, Drouet MG. Comparison of salt-free aluminum dross treatment processes. Resour Conserv Recycl. 2002; 36. doi: 10.1016/S0921-3449(02)00010-1

6. Yoshimura HN, Abreu AP, Molisani AL, et al. Evaluation of aluminum dross waste as raw material for refractories. Ceramics International. 2008; 34(3): 581-591. doi: 10.1016/j.ceramint.2006.12.007

7. Narayanan R, Sahai Y. Chemical Interactions of Dross with Water and Water Vapor in Aluminum Scrap Remelting. Materials Transactions, JIM. 1997; 38(1): 85-88. doi: 10.2320/matertrans1989.38.85

8. Das BR, Dash B, Tripathy BC, et al. Production of η-alumina from waste aluminium dross. Minerals Engineering. 2007; 20(3): 252-258. doi: 10.1016/j.mineng.2006.09.002

9. Shinzato MC, Hypolito R. Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Management. 2005; 25(1): 37-46. doi: 10.1016/j.wasman.2004.08.005

10. Harrison PTC. Fluoride in water: A UK perspective. Journal of Fluorine Chemistry. 2005; 126(11-12): 1448-1456. doi: 10.1016/j.jfluchem.2005.09.009

11. World Health Organization. Sodium in drinking-water, background document for development of WHO guidelines for drinking-water quality, 2nd ed. World Health Organization; 1996.

12. Bruckard WJ, Woodcock JT. Recovery of valuable materials from aluminium salt cakes. International Journal of Mineral Processing. 2009; 93(1): 1-5. doi: 10.1016/j.minpro.2009.05.002

13. Afzal S, Rahimi A, Ehsani MR, et al. Experimental study of hydrogen fluoride adsorption on sodium fluoride. Journal of Industrial and Engineering Chemistry. 2010; 16(1): 147-151. doi: 10.1016/j.jiec.2010.01.004

14. Fryxell GE, Cao G. Environmental Applications of Nanomaterials. Imperial College Press; 2011. doi: 10.1142/p814

15. Lailach G, Bulan A, Buss G. Process for the preparation of sodium fluoride. US6251358B1, 1998.

16. Abdelkader E, Buckner SW. Synthesis of NaX (X = F, Cl, Br, I) Nanoparticles. Soft Nanoscience Letters. 2013; 3(1): 22-27. doi: 10.4236/snl.2013.31005

17. Kupka N, Rudolph M. Role of sodium carbonate in scheelite flotation—A multi-faceted reagent. Minerals Engineering. 2018; 129: 120-128. doi: 10.1016/j.mineng.2018.09.005

18. Kientzler P, Löbbers K, Michard L. Improved modifying flux for molten aluminium. EP2231887A1, 2013.

19. Dang H, Chang Z, Wu X, et al. Na2SO4–NaCl binary eutectic salt roasting to enhance extraction of lithium from pyrometallurgical slag of spent lithium-ion batteries. Chinese Journal of Chemical Engineering. 2022; 41: 294-300. doi: 10.1016/j.cjche.2021.09.008

20. Huang J, Wang Y, Zhou G, et al. Investigation on the Effect of Roasting and Leaching Parameters on Recovery of Gallium from Solid Waste Coal Fly Ash. Metals. 2019; 9(12): 1251. doi: 10.3390/met9121251

21. Wu H, Yan H, Liang Y, et al. Rare earth recovery from fluoride molten-salt electrolytic slag by sodium carbonate roasting-hydrochloric acid leaching. Journal of Rare Earths. 2023; 41(8): 1242-1249. doi: 10.1016/j.jre.2022.07.001

22. Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; 1998.

23. Mahinroosta M, Allahverdi A. A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of Cleaner Production. 2018; 179: 93-102. doi: 10.1016/j.jclepro.2018.01.079

24. Mahinroosta M, Allahverdi A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study. Journal of Environmental Management. 2018; 212: 278-291. doi: 10.1016/j.jenvman.2018.02.009

25. Bowen P, Highfield JG, Mocellin A, et al. Degradation of Aluminum Nitride Powder in an Aqueous Environmet. Journal of the American Ceramic Society. 1990; 73(3): 724-728. doi: 10.1111/j.1151-2916.1990.tb06579.x

26. Fukumoto S, Hookabe T, Tsubakino H. Hydrolysis behavior of aluminum nitride in various solutions. J Mater Sci. 2000; 35. doi: 10.1023/A:1004718329003

27. Reynolds JG, Belsher JD. A Review of Sodium Fluoride Solubility in Water. Journal of Chemical & Engineering Data. 2017; 62(6): 1743-1748. doi: 10.1021/acs.jced.7b00089

28. Wang B, Zhang W, Zhang W, et al. Progress in Drying Technology for Nanomaterials. Drying Technology. 2005; 23(1-2): 7-32. doi: 10.1081/drt-200047900

29. Sarig S, Eidelman N, Glasner A, et al. The effect of supersaturation on the crystal characteristics of potassium chloride. Journal of Chemical Technology and Biotechnology. 1978; 28(10): 663-667. doi: 10.1002/jctb.5700281004

30. Balasubramanian C, Bellucci S, Cinque G, et al. Characterization of aluminium nitride nanostructures by XANES and FTIR spectroscopies with synchrotron radiation. Journal of Physics: Condensed Matter. 2006; 18(33): S2095-S2104. doi: 10.1088/0953-8984/18/33/s25

31. Roy Chowdhuri A, Takoudis CG, Klie RF, et al. Metalorganic chemical vapor deposition of aluminum oxide on Si: Evidence of interface SiO2 formation. Applied Physics Letters. 2002; 80(22): 4241-4243. doi: 10.1063/1.1483903

32. Bryukvina LI, Khulugurov VM, Parfianovich IA. Infrared vibrational spectra of radiatively induced absorption of NaF: OH crystals. Opt Spectrosc. 1987; 63(1).

33. Cheng J, Guo R, Wang QM. Zinc oxide single-crystal microtubes. Applied Physics Letters. 2004; 85(22): 5140-5142. doi: 10.1063/1.1825067

34. Cheng J, Agrawal D, Zhang Y, et al. Fabricating transparent ceramics by microwave sintering. Am Ceram Soc Bull. 2000; 79(9).

35. Liu XY, Bennema P. Theoretical consideration of the growth morphology of crystals. Physical Review B. 1996; 53(5): 2314-2325. doi: 10.1103/physrevb.53.2314

36. Ma M, Ye W, Wang XX. Effect of supersaturation on the morphology of hydroxyapatite crystals deposited by electrochemical deposition on titanium. Materials Letters. 2008; 62(23): 3875-3877. doi: 10.1016/j.matlet.2008.05.009




DOI: https://doi.org/10.24294/can.v7i1.5593

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mostafa Mahinroosta, Ali Allahverdi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.