Green recovery of NaF-Na2CO3-NaCl ternary fluxing agent from aluminum dross
Article ID: 5593
Vol 7, Issue 1, 2024
Vol 7, Issue 1, 2024
VIEWS - 1444 (Abstract)
Abstract
The present study deliberates the recovery of sodium fluoride (NaF)-natrite (Na2CO3)-sodium chloride (NaCl) ternary fluxing agent from hazardous aluminum dross waste using three types of heating methods, including direct heating on a hotplate, heating by a drying oven, and microwave heating. Deionized water was used as a green solvent for the recovery experiments. Investigating the effects of time and temperature on recovery percentage showed that a recovery percentage of around 96.5% can be achieved under time and temperature of 90 min and 95 ℃, respectively. The recovered fluxing agent salt was characterized by XRD, FTIR spectroscopy, FESEM, and energy dispersive X-ray spectroscopy (EDS) elemental analysis. Rietveld fitting analysis of phases detected in the XRD patterns showed that the recovered fluxing agent contained 74–81 wt.% NaF, 8–11 wt.% NaCl, and 11–14.7 wt.% Na2CO3. The FESEM micrographs revealed that the retrieved salts were in nano scale. The recovered fluxing agent showed different morphologies including needle-like, round shape, and a mixture of both, corresponding to microwave, drying oven, and hotplate heating methods, respectively. The nano-needles exhibited diameter of the tip and base in the range of 39–60 nm and 50–103 nm, respectively.
Keywords
waste; sodium fluoride; needle-like; microwave-assisted; nanostructure
Full Text:
PDFReferences
- Xiao Y, Reuter MA, Boin UDO. Aluminium Recycling and Environmental Issues of Salt Slag Treatment. Journal of Environmental Science and Health, Part A. 2005; 40(10): 1861-1875. doi: 10.1080/10934520500183824
- Tsakiridis PE, Oustadakis P, Agatzini-Leonardou S. Aluminium recovery during black dross hydrothermal treatment. Journal of Environmental Chemical Engineering. 2013; 1(1-2): 23-32. doi: 10.1016/j.jece.2013.03.004
- Dash B, Das BR, Tripathy BC, et al. Acid dissolution of alumina from waste aluminium dross. Hydrometallurgy. 2008; 92(1-2): 48-53. doi: 10.1016/j.hydromet.2008.01.006
- Sarker MdSR, Alam MdZ, Qadir MdR, et al. Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process. International Journal of Minerals, Metallurgy, and Materials. 2015; 22(4): 429-436. doi: 10.1007/s12613-015-1090-2
- Unlü N, Drouet MG. Comparison of salt-free aluminum dross treatment processes. Resour Conserv Recycl. 2002; 36. doi: 10.1016/S0921-3449(02)00010-1
- Yoshimura HN, Abreu AP, Molisani AL, et al. Evaluation of aluminum dross waste as raw material for refractories. Ceramics International. 2008; 34(3): 581-591. doi: 10.1016/j.ceramint.2006.12.007
- Narayanan R, Sahai Y. Chemical Interactions of Dross with Water and Water Vapor in Aluminum Scrap Remelting. Materials Transactions, JIM. 1997; 38(1): 85-88. doi: 10.2320/matertrans1989.38.85
- Das BR, Dash B, Tripathy BC, et al. Production of η-alumina from waste aluminium dross. Minerals Engineering. 2007; 20(3): 252-258. doi: 10.1016/j.mineng.2006.09.002
- Shinzato MC, Hypolito R. Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Management. 2005; 25(1): 37-46. doi: 10.1016/j.wasman.2004.08.005
- Harrison PTC. Fluoride in water: A UK perspective. Journal of Fluorine Chemistry. 2005; 126(11-12): 1448-1456. doi: 10.1016/j.jfluchem.2005.09.009
- World Health Organization. Sodium in drinking-water, background document for development of WHO guidelines for drinking-water quality, 2nd ed. World Health Organization; 1996.
- Bruckard WJ, Woodcock JT. Recovery of valuable materials from aluminium salt cakes. International Journal of Mineral Processing. 2009; 93(1): 1-5. doi: 10.1016/j.minpro.2009.05.002
- Afzal S, Rahimi A, Ehsani MR, et al. Experimental study of hydrogen fluoride adsorption on sodium fluoride. Journal of Industrial and Engineering Chemistry. 2010; 16(1): 147-151. doi: 10.1016/j.jiec.2010.01.004
- Fryxell GE, Cao G. Environmental Applications of Nanomaterials. Imperial College Press; 2011. doi: 10.1142/p814
- Lailach G, Bulan A, Buss G. Process for the preparation of sodium fluoride. US6251358B1, 1998.
- Abdelkader E, Buckner SW. Synthesis of NaX (X = F, Cl, Br, I) Nanoparticles. Soft Nanoscience Letters. 2013; 3(1): 22-27. doi: 10.4236/snl.2013.31005
- Kupka N, Rudolph M. Role of sodium carbonate in scheelite flotation—A multi-faceted reagent. Minerals Engineering. 2018; 129: 120-128. doi: 10.1016/j.mineng.2018.09.005
- Kientzler P, Löbbers K, Michard L. Improved modifying flux for molten aluminium. EP2231887A1, 2013.
- Dang H, Chang Z, Wu X, et al. Na2SO4–NaCl binary eutectic salt roasting to enhance extraction of lithium from pyrometallurgical slag of spent lithium-ion batteries. Chinese Journal of Chemical Engineering. 2022; 41: 294-300. doi: 10.1016/j.cjche.2021.09.008
- Huang J, Wang Y, Zhou G, et al. Investigation on the Effect of Roasting and Leaching Parameters on Recovery of Gallium from Solid Waste Coal Fly Ash. Metals. 2019; 9(12): 1251. doi: 10.3390/met9121251
- Wu H, Yan H, Liang Y, et al. Rare earth recovery from fluoride molten-salt electrolytic slag by sodium carbonate roasting-hydrochloric acid leaching. Journal of Rare Earths. 2023; 41(8): 1242-1249. doi: 10.1016/j.jre.2022.07.001
- Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; 1998.
- Mahinroosta M, Allahverdi A. A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of Cleaner Production. 2018; 179: 93-102. doi: 10.1016/j.jclepro.2018.01.079
- Mahinroosta M, Allahverdi A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study. Journal of Environmental Management. 2018; 212: 278-291. doi: 10.1016/j.jenvman.2018.02.009
- Bowen P, Highfield JG, Mocellin A, et al. Degradation of Aluminum Nitride Powder in an Aqueous Environmet. Journal of the American Ceramic Society. 1990; 73(3): 724-728. doi: 10.1111/j.1151-2916.1990.tb06579.x
- Fukumoto S, Hookabe T, Tsubakino H. Hydrolysis behavior of aluminum nitride in various solutions. J Mater Sci. 2000; 35. doi: 10.1023/A:1004718329003
- Reynolds JG, Belsher JD. A Review of Sodium Fluoride Solubility in Water. Journal of Chemical & Engineering Data. 2017; 62(6): 1743-1748. doi: 10.1021/acs.jced.7b00089
- Wang B, Zhang W, Zhang W, et al. Progress in Drying Technology for Nanomaterials. Drying Technology. 2005; 23(1-2): 7-32. doi: 10.1081/drt-200047900
- Sarig S, Eidelman N, Glasner A, et al. The effect of supersaturation on the crystal characteristics of potassium chloride. Journal of Chemical Technology and Biotechnology. 1978; 28(10): 663-667. doi: 10.1002/jctb.5700281004
- Balasubramanian C, Bellucci S, Cinque G, et al. Characterization of aluminium nitride nanostructures by XANES and FTIR spectroscopies with synchrotron radiation. Journal of Physics: Condensed Matter. 2006; 18(33): S2095-S2104. doi: 10.1088/0953-8984/18/33/s25
- Roy Chowdhuri A, Takoudis CG, Klie RF, et al. Metalorganic chemical vapor deposition of aluminum oxide on Si: Evidence of interface SiO2 formation. Applied Physics Letters. 2002; 80(22): 4241-4243. doi: 10.1063/1.1483903
- Bryukvina LI, Khulugurov VM, Parfianovich IA. Infrared vibrational spectra of radiatively induced absorption of NaF: OH crystals. Opt Spectrosc. 1987; 63(1).
- Cheng J, Guo R, Wang QM. Zinc oxide single-crystal microtubes. Applied Physics Letters. 2004; 85(22): 5140-5142. doi: 10.1063/1.1825067
- Cheng J, Agrawal D, Zhang Y, et al. Fabricating transparent ceramics by microwave sintering. Am Ceram Soc Bull. 2000; 79(9).
- Liu XY, Bennema P. Theoretical consideration of the growth morphology of crystals. Physical Review B. 1996; 53(5): 2314-2325. doi: 10.1103/physrevb.53.2314
- Ma M, Ye W, Wang XX. Effect of supersaturation on the morphology of hydroxyapatite crystals deposited by electrochemical deposition on titanium. Materials Letters. 2008; 62(23): 3875-3877. doi: 10.1016/j.matlet.2008.05.009
DOI: https://doi.org/10.24294/can.v7i1.5593
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mostafa Mahinroosta, Ali Allahverdi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.