Photocatalytic degradation properties

Aiza Maqbool

Article ID: 5523
Vol 7, Issue 1, 2024

VIEWS - 85 (Abstract) 36 (PDF)

Abstract


Photocatalysis, an innovative technology, holds promise for addressing industrial pollution issues across aqueous solutions, surfaces, and gaseous effluents. The efficiency of photodegradation is notably influenced by light intensity and duration, underscoring the importance of optimizing these parameters. Furthermore, temperature and pH have a significant impact on pollutant speciation, surface chemistry, and reaction kinetics, therefore process optimization must consider these factors. Photocatalytic degradation is an effective method for treating water in environmental remediation, providing a flexible and eco-friendly way to eliminate organic contaminants from wastewater. Selectivity in photocatalytic degradation is achieved by a multidisciplinary approach that includes reaction optimization, catalyst design, and a profound awareness of chemical processes. To create efficient and environmentally responsible methods for pollution removal and environmental remediation, researchers are working to improve these components.


Keywords


catalyst dosage; pollutant degradation; environmental remediation; catalytic activity; reaction kinetics; water treatment; catalyst optimization; sustainable chemistry; environmental impact assessment

Full Text:

PDF


References


1. Maqbool A, Shukrullah S, Kashif F, et al. Photocatalytic response of plasma functionalized and sonochemically TiO2/BiOBr coated fabrics for self-cleaning application. AIP Advances. 2023; 13(12). doi: 10.1063/5.0182513

2. Kashif Z, Naz MY, Maqbool A, et al. Study of dual Z-scheme photocatalytic response of TiO2/Ag/ZnO coating on plasma-modified cotton fabric for self-cleaning application. AIP Advances. 2024; 14(1). doi: 10.1063/5.0187410

3. Nam Y, Lim JH, Ko KC, et al. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. Journal of Materials Chemistry A. 2019; 7(23): 13833-13859. doi: 10.1039/c9ta03385h

4. Karunakaran C, Abiramasundari G, Gomathisankar P, et al. Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Materials Research Bulletin. 2011; 46(10): 1586-1592. doi: 10.1016/j.materresbull.2011.06.019

5. Verbič A, Gorjanc M, Simončič B. Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings. 2019; 9(9): 550. doi: 10.3390/coatings9090550

6. Marschall R. 50 Years of Materials Research for Photocatalytic Water Splitting. European Journal of Inorganic Chemistry. 2021; 2021(25): 2435-2441. doi: 10.1002/ejic.202100264

7. Rashid MM, Simončič B, Tomšič B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces. 2021; 22: 100890. doi: 10.1016/j.surfin.2020.100890

8. Lin Z, Jiang X, Xu W, et al. The effects of water, substrate, and intermediate adsorption on the photocatalytic decomposition of air pollutants over nano-TiO2 photocatalysts. Physical Chemistry Chemical Physics. 2024; 26(2): 662-678. doi: 10.1039/d3cp04350a

9. Lanjwani MF, Tuzen M, Khuhawar MY, et al. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorganic Chemistry Communications. 2024; 159: 111613. doi: 10.1016/j.inoche.2023.111613

10. Ansari M, Sajjadi SA, Sahebian S, et al. Photocatalytic and Antibacterial Activity of Silver/Titanium Dioxide/Zinc Oxide Nanoparticles Coated on Cotton Fabrics. ChemistrySelect. 2020; 5(27): 8370-8378. doi: 10.1002/slct.202001655

11. Herrmann JM, Guillard C. Photocatalytic degradation of pesticides in agricultural used waters. Comptes Rendus de l’Académie des Sciences-Series IIC-Chemistry. 2000; 3(6): 417-422. doi: 10.1016/S1387-1609(00)01137-3

12. Yang H, Yang B, Chen W, et al. Preparation and Photocatalytic Activities of TiO2-Based Composite Catalysts. Catalysts. 2022; 12(10): 1263. doi: 10.3390/catal12101263

13. Page K. Photocatalytic thin films: their characterisation and antimicrobial properties [PhD thesis]. UCL (University College London); 2009.

14. Chan CC, Chang CC, Hsu WC, et al. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chemical Engineering Journal. 2009; 152(2-3): 492-497. doi: 10.1016/j.cej.2009.05.012

15. Wang Y, Deng K, Zhang L. Visible Light Photocatalysis of BiOI and Its Photocatalytic Activity Enhancement by in Situ Ionic Liquid Modification. The Journal of Physical Chemistry C. 2011; 115(29): 14300-14308. doi: 10.1021/jp2042069

16. Sadeghfar F, Zalipour Z, Taghizadeh M, et al. Photodegradation processes. Interface Science and Technology. Published online 2021: 55-124. doi: 10.1016/b978-0-12-818806-4.00013-9

17. Sandhu N, Sandhu N, Kumar C, et al. Critical Review on Titania-Based Nanoparticles: Synthesis, Characterization, and Application as a Photocatalyst. Chemistry Africa. 2024; 7(4): 1-20. doi:10.1007/s42250-023-00875-1

18. Alkaim AF, Aljeboree AM, Alrazaq NA, et al. Effect of pH on Adsorption and Photocatalytic Degradation Efficiency of Different Catalysts on Removal of Methylene Blue. Asian Journal of Chemistry. 2014; 26(24): 8445-8448. doi: 10.14233/ajchem.2014.17908

19. Sudapalli AM, Shimpi NG. Tetragonal SnO2 Nanoparticles: An Efficient Photocatalyst for the Degradation of Hazardous Ionic Dyes. ChemistrySelect. 2023; 8(1). doi: 10.1002/slct.202203310

20. Shakil AR, Begum ML, Shaikh MAA,et al. Jute Fiber Reinforced Hydrogel Composite for Removal of Methylene Blue Dye from Water. Dhaka Univ. J. Sci. 2022; 70(2): 59-64. doi: 10.3329/dujs.v70i2.62608

21. Shabil Sha M, Anwar H, Musthafa FN, et al. Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO). Scientific Reports. 2024; 14(1). doi: 10.1038/s41598-024-53626-8

22. Yusuff AS, Popoola LT, Gbadamosi AO, et al. Coal fly ash-supported ZnO-promoted TiO2 towards UV photocatalytic degradation of anthraquinone dye: Parametric optimization, kinetics and mechanism studies. Materials Today Communications. 2024; 38: 107999. doi: 10.1016/j.mtcomm.2023.107999

23. Gong H, Geng C, Wang R, et al. Shell-Fe/ZnO: A recyclable catalyst with Fe-doped ZnO shell structure for photocatalytic oxidative degradation of tetracycline hydrochloride. Applied Surface Science. 2024; 655: 159653. doi: 10.1016/j.apsusc.2024.159653

24. Miseki Y, Kato H, Kudo A. Water Splitting into H2 and O2 over Ba5Nb4O15 Photocatalysts with Layered Perovskite Structure Prepared by Polymerizable Complex Method. Chemistry Letters. 2006; 35(9): 1052-1053. doi: 10.1246/cl.2006.1052

25. Sivula K, van de Krol R. Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials. 2016; 1(2). doi: 10.1038/natrevmats.2015.10




DOI: https://doi.org/10.24294/can.v7i1.5523

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.