EfficiencyBeta Batteries with Direct Energy Conversion
Vol 1, Issue 2, 2018
VIEWS - 14576 (Abstract)
Abstract
The properties of the beta batteries are compared, which are made on the basis of the different β-isotopes with beta decay. Tritium and Ni-63 make it possible to make β-sources of high activity, without harmful associated emissions, with low self-absorption, emitting high-energy β-electrons that penetrate deep into the semiconductor and generate a large number of electron-hole pairs. The efficiency of beta batteries needs to be analyzed based on the real energy distribution of β-electrons. It makes possible to obtain the real value of the energy absorbed inside the β-source, correctly estimate the amount of self-absorption of the β-electrons and part of the β-electronsthere is a penetrate into the semiconductor, the number of electrons and holes that are generated in the semiconductor, and the magnitude of the idling voltage. Formulas for these quantities are calculated in this paper.
Keywords
Full Text:
PDFReferences
1. Bower K.E., Barbanel Y.A., Shreter Y.G., at al. and Bohnert G.W. Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries. CRC Press, Boca Raton, London, New York, Washington, 2002, 472 p.
2. ReznevA.A., PustovalovA.A., MaksimovE.M., PerederiiN.K., PetrenkoN.S. Perspektivysozdaniyaminiatyurnogoistochnikatokana beta-voltaicheskomeffekte s ispolzovaniem v kachestveaktivnogoelementaizotopa Ni-63. Nano- Mikrosist.Tekh. 2009; 3(104): 14-16.
3. Chandrashekhar M.V.S., Thomas Ch.I., Li H., Spencer M.G., Lal A. Demonstration of a 4HSiCbetavoltaic cell. Appl. Phys. Lett. 2006; 88: 033506-3.
4. Eiting C.J., Krishnamoorthy V., Romero E., Jones S. Betavoltaic Power Cells.Proceedings of the 42nd Power Source Conference, Philadelphia, PA, June 12–15, 2006;601-606.
5. Andreev V.M., Kavetsky A.G., Khvostikov V.S., Larionov V.R., Rumyantsev V.D., Shvarts M.Z., Yakimova E.V., and Ystinov V.A. Tritium-powered betacells based on AlxGa1-xAs.Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, 2000; 1253-1256.
6. RybickiG.C. Silicon Carbide Radioisotope Batteries. NASA/CP-2001-210747/REV1, 2001; 199-233.
7. Guo H. and Lal A.NanopowerBetavoltaicMicrobatteries. Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference,Boston, 2003;36-39.
8. Sun W., Kherani N.P., Hirschman K.D., Gadeken L.L., Fauchet P.M. A Three-Dimensional Porous Silicon p-n Diode for Betavoltaics and Photovoltaics. Adv. Mater. 2005;17: 1230-1233.
9. Sze S.M. Physics of Semiconductor Devices.John Wiley and Sons (WIE), New York, Chichester, Brisbar, Toronto, Singapore, 1981, 868 p.
10. Everhart T.E., Hoff P.H. Determination of kilovolt electron energy dissipation versus penetration distance in solid materials. J. Appl. Phys. 1971; 42: 5837-5846.
11. Ong V.K.S., Phua P.C. Junction depth determination by reconstruction of the charge collection probability in a semiconductor device.Semicond. Sci. Technol. 2001;16: 691-698.
12. Kolobashkin V.M., Rubtsov P.M., Aleksankin V.G., Ruzhanskiy P.A. Beta-izluchenieproduktovdeleniya: Spravochnik. Atomizdat, Moscow, 1978, 472 p. (Beta-radiation of fission products: Handbook)
13. Arnal H., Verdier P., Vincensini P. Coefficient de retrodiffussiondans de gas d’electronsmonocinetiquesarrivant sur la cible sous uneincindence oblique. Compt. Rend. Acad. Sci. 1969; 386: 1526-1536.
14. Remier L., Tollkamp C. Measuring the backscattering coefficient and secondary electron yield inside a SEM.Scanning, 1980; 3: 35-39.
15. Seltzer S.M. Transmission of Electrons through Foils. National Bureau of Standards. Washington, D.C. 20234. 1974.
16. Reimer L. Transmission Electron Microscopy, Physics of Image Formation, and Microanalysis. Springer, Berlin, 1989, 547 p.
17. Egerton R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Plenum Press, New York, 1996, 485 p.
18. Tung C.J., Ritchie R.H., Ashley J.C. and Anderson V.E. Inelastic Interactions of Swift Electrons in Solids. Port Royal Hoad, Springfield, Virginia, 1976, 118 p.
19. Pucherov N.N., Romanovsky S.V., Chesnokova N.D. Tablicymassovoytormoznoysposobnostiiprobegovzaryazhennyhchastic s energiey 1-100 MeV. Kiev: "NaukovaDumka". 1975. 345 p. (Tables of the mass stopping power and ranges of charged particles with an energy of 1-100 MeV)
20. Egerton R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope, appendix B. Plenum Press, New York, 1986, 410 p.
21. Bartlett P.L., Stelbovics A.T. Calculation of electron-impact total-ionization cross sections. Phys. Rev. A 2002; 66: 012707-10.
22. Gryzinski M. Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions. Phys. Rev. 1965; 138: A336-A358.
23. Leamy H.J. Charge Collection Scanning Electron Microscopy.J. Appl. Phys. 1982; 53: R51-R80.
DOI: https://doi.org/10.24294/can.v1i2.529
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Characterization and Application of Nanomaterials
This site is licensed under a Creative Commons Attribution 4.0 International License.