Efficiency beta batteries with direct energy conversion
Vol 1, Issue 2, 2018
Abstract
The properties of the beta batteries are compared, which are made on the basis of the different β-isotopes with beta decay. Tritium and Ni-63 make it possible to make β-sources of high activity, without harmful associated emissions, with low self-absorption, emitting high-energy β-electrons that penetrate deep into the semiconductor and generate a large number of electron-hole pairs. The efficiency of beta batteries needs to be analyzed based on the real energy distribution of β-electrons. It makes possible to obtain the real value of the energy absorbed inside the β-source, correctly estimate the amount of self-absorption of the β-electrons and part of the β-electronsthere is a penetrate into the semiconductor, the number of electrons and holes that are generated in the semiconductor, and the magnitude of the idling voltage. Formulas for these quantities are calculated in this paper.
Keywords
Full Text:
PDFReferences
1. Bower KE, Barbanel YA, Shreter YG, et al. Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries. CRC Press, Boca Raton, London, New York, Washington. 2002; 472 p.
2. Reznev AA, Pustovalov AA, Maksimov EM, et al. Perspektivy sozdaniya miniatyurnogo istochnika toka na beta-voltaicheskom effekte s ispolzovaniem v kachestve aktivnogo elementa izotopa Ni-63. Nano- Mikrosist. Tekh. 2009; 3 (104): 14-16.
3. Chandrashekhar MVS, Thomas ChI, Li H, et al. Demonstration of a 4H SiC betavoltaic cell. Appl. Phys. Lett. 2006; 88: 033506-3.
4. Eiting CJ, Krishnamoorthy V, Romero E, et al. Proceedings of the 42nd Power Source Conference, Philadelphia, PA, June 12–15, 2006; 601-606.
5. Andreev VM, Kavetsky AG, Khvostikov VS, et al. Tritium-powered betacells based on AlxGa1-xAs. Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, 2000; 1253-1256.
6. Rybicki GC. Silicon Carbide Radioisotope Batteries. NASA/CP-2001-210747/REV1, 2001; 199-233.
7. Guo H, Lal A. Nanopower Betavoltaic Microbatteries. Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Boston, 2003; 36-39.
8. Sun W, Kherani NP, et al. A Three-Dimensional Porous Silicon p-n Diode for Betavoltaics and Photovoltaics. Adv. Mater. 2005; 17: 1230-1233.
9. Sze SM. Physics of Semiconductor Devices. John Wiley and Sons (WIE), New York, Chichester, Brisbar, Toronto, Singapore, 1981; 868 p.
10. Everhart TE, Hoff P.H. Determination of kilovolt electron energy dissipation versus penetration distance in solid materials. J. Appl. Phys. 1971; 42: 5837-5846.
11. Ong VKS, Phua PC. Junction depth determination by reconstruction of the charge collection probability in a semiconductor device. Semicond. Sci. Technol. 2001; 16: 691-698.
12. Kolobashkin VM, Rubtsov PM, Aleksankin VG, Ruzhanskiy PA Beta-izluchenie produktov deleniya: Spravochnik. Atomizdat, Moscow, 1978; 472 p. (Beta-radiation of fission products: Handbook)
13. Arnal H, Verdier P, Vincensini P. Coefficient de retrodiffussion dans de gas d’electrons monocinetiques arrivant sur la cible sous une incindence oblique. Compt. Rend. Acad. Sci. 1969; 386: 1526-1536.
14. Remier L, Tollkamp C. Measuring the backscattering coefficient and secondary electron yield inside a SEM. Scanning. 1980; 3: 35-39.
15. Seltzer SM Transmission of Electrons through Foils. National Bureau of Standards. Washington, D.C. 20234. 1974.
16. Reimer L. Transmission Electron Microscopy, Physics of Image Formation, and Microanalysis. Springer, Berlin. 1989; 547 p.
17. Egerton RF. Electron Energy-Loss Spectroscopy in the Electron Microscope. Plenum Press, New York. 1996; 485 p.
18. Tung CJ, Ritchie RH, Ashley JC et al. Inelastic Interactions of Swift Electrons in Solids. Port Royal Hoad, Springfield, Virginia. 1976; 118 p.
19. Pucherov NN, Romanovsky SV, Chesnokova ND et al. Tablicy massovoy tormoznoy sposobnosti i probegov zaryazhennyh chastic s energiey 1-100 MeV. Kiev: "Naukova Dumka". 1975. 345 p. (Tables of the mass stopping power and ranges of charged particles with an energy of 1-100 MeV)
20. Egerton RF. Electron Energy-Loss Spectroscopy in the Electron Microscope, appendix B. Plenum Press, New York. 1986; 410 p.
21. Bartlett PL, Stelbovics AT. Calculation of electron-impact total-ionization cross sections. Phys. Rev. A 2002; 66: 012707-10.
22. Gryzinski M. Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions. Phys. Rev. 1965; 138: A336-A358.
23. Leamy HJ. Charge Collection Scanning Electron Microscopy J. Appl. Phys. 1982; 53: R51-R80.
DOI: https://doi.org/10.24294/can.v1i2.529
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Characterization and Application of Nanomaterials
This site is licensed under a Creative Commons Attribution 4.0 International License.