Fullerene in water remediation nanocomposite membranes—Cutting edge advancements
Vol 7, Issue 2, 2024
VIEWS - 610 (Abstract) 583 (PDF)
Abstract
Among carbon nanoparticles, fullerene has been observed as a unique zero-dimensional hollow molecule. Fullerene has a high surface area and exceptional structural and physical features (optical, electronic, heat, mechanical, and others). Advancements in fullerene have been observed in the form of nanocomposites. Application of fullerene nanocomposites has been found in the membrane sector. This cutting-edge review article basically describes the potential of fullerene nanocomposite membranes for water remediation. Adding fullerene nanoparticles has been found to amend the microstructure and physical features of the nanocomposite membranes in addition to membrane porosity, selectivity, permeation, water flux, desalination, and other significant properties for water remediation. Variations in the designs of fullerene nanocomposites have resulted in greater separations between salts, desired metals, toxic metal ions, microorganisms, etc. Future investigations on ground-breaking fullerene-based membrane materials may overcome several design and performance challenges for advanced applications.
Keywords
Full Text:
PDFReferences
1. Kausar A, Ahmad I. Graphene and nanocomposites—Imprints on environmentally sustainable production and applications based on ecological aspects. Characterization and Application of Nanomaterials. 2024; 7(1): 4226. doi: 10.24294/can.v7i1.4226
2. Shah MP. Sustainable Industrial Wastewater Treatment and Pollution Control. Springer Nature Singapore; 2023. doi: 10.1007/978-981-99-2560-5
3. Bardhan A, Subbiah S, Mohanty K, et al. Feasibility of Poly (Vinyl Alcohol)/Poly (Diallyldimethylammonium Chloride) Polymeric Network Hydrogel as Draw Solute for Forward Osmosis Process. Membranes. 2022; 12(11): 1097. doi: 10.3390/membranes12111097
4. Hallinan DT, Minelli M, Oparaji O, et al. Effect of Polystyrene Synthesis Method on Water Sorption and Glass Transition. Membranes. 2022; 12(11): 1059. doi: 10.3390/membranes12111059
5. Lu X, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chemical Society Reviews. 2021; 50(11): 6290-6307. doi: 10.1039/d0cs00502a
6. Lalia BS, Kochkodan V, Hashaikeh R, et al. A review on membrane fabrication: Structure, properties and performance relationship. Desalination. 2013; 326: 77-95. doi: 10.1016/j.desal.2013.06.016
7. Dong X, Lu D, Harris TAL, et al. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes. 2021; 11(5): 309. doi: 10.3390/membranes11050309
8. Ng ZC, Lau WJ, Matsuura T, et al. Thin film nanocomposite RO membranes: Review on fabrication techniques and impacts of nanofiller characteristics on membrane properties. Chemical Engineering Research and Design. 2021; 165: 81-105. doi: 10.1016/j.cherd.2020.10.003
9. Zhang Y, Wang H, Wang W, et al. Engineering covalent organic framework membranes for efficient ionic/molecular separations. Matter. 2024; 7(4): 1406-1439. doi: 10.1016/j.matt.2024.01.028
10. Yang Y, Chai W, Zhang L, et al. A mini‐review of polymeric porous membranes with vertically penetrative pores. Journal of Polymer Science. 2023; 62(3): 492-507. doi: 10.1002/pol.20230501
11. Subaer S, Fansuri H, Haris A, et al. Pervaporation Membranes for Seawater Desalination Based on Geo–rGO–TiO2 Nanocomposites: Part 2—Membranes Performances. Membranes. 2022; 12(11): 1046. doi: 10.3390/membranes12111046
12. Kausar A, Bocchetta P. Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. Journal of Composites Science. 2022; 6(3): 76. doi: 10.3390/jcs6030076
13. Tufail S, Sherwani MA, Shamim Z, et al. 2D nanostructures: Potential in diagnosis and treatment of Alzheimer’s disease. Biomedicine & Pharmacotherapy. 2024; 170: 116070. doi: 10.1016/j.biopha.2023.116070
14. Teow YH, Ooi BS, Ahmad AL, et al. Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal. Membranes. 2020; 11(1): 16. doi: 10.3390/membranes11010016
15. Jatoi AS, Ahmed J, Bhutto AA, et al. Recent advances and future perspectives of carbon-based nanomaterials for environmental remediation. Brazilian Journal of Chemical Engineering. 2024. doi: 10.1007/s43153-024-00439-x
16. Silah H, Unal DN, Selcuk O, Uslu B. Applications of zero-dimensional carbon nanomaterials in water treatment. In: Joseph K, Wilson R, George G, Appukuttan S (editors). Zero-Dimensional Carbon Nanomaterials. Elsevier; 2024. pp. 577-609. doi: 10.1016/b978-0-323-99535-1.00018-4
17. Jatoi AS, Hashmi Z, Usman T, et al. Role of carbon nanomaterials for wastewater treatment—A brief review. In: Dehghani MH, Karri RR, Mubarak NM (editors). Water Treatment Using Engineered Carbon Nanotubes. Elsevier; 2024. pp. 29-62. doi: 10.1016/b978-0-443-18524-3.00016-7
18. Aydin D, Gübbük İH, Ersöz M. Recent advances and applications of nanostructured membranes in water purification. Turkish Journal of Chemistry. 2024; 48(1): 1-20. doi: 10.55730/1300-0527.3635
19. Balakumar S, Mahesh N, Kamaraj M, et al. Customized carbon composite nanomaterials for the mitigation of emerging contaminants: a review of recent trends. Carbon Letters. 2024; 34: 1091-1114. doi: 10.1007/s42823-024-00715-3
20. Jehoulet C, Obeng YS, Kim YT, et al. Electrochemistry and Langmuir trough studies of fullerene C60 and C70 films. Journal of the American Chemical Society. 1992; 114(11): 4237-4247. doi: 10.1021/ja00037a030
21. Chen Z, Zhu J, Yang D, et al. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy & Environmental Science. 2023; 16(7): 3119-3127. doi: 10.1039/d3ee01164j
22. Radford CL, Mudiyanselage PD, Stevens AL, et al. Heteroatoms as Rotational Blocking Groups for Non-Fullerene Acceptors in Indoor Organic Solar Cells. ACS Energy Letters. 2022; 7(5): 1635-1641. doi: 10.1021/acsenergylett.2c00515
23. Montellano López A, Mateo-Alonso A, Prato M. Materials chemistry of fullerene C60derivatives. Journal of Materials Chemistry. 2011; 21(5): 1305-1318. doi: 10.1039/c0jm02386h
24. Blanter MS, Borisova PA, Brazhkin VV, et al. The influence of metals on the phase transformations of fullerenes at high pressure and high temperatures. Materials Letters. 2022; 318: 132199. doi: 10.1016/j.matlet.2022.132199
25. Akasaka T, Wakahara T, Nagase S, et al. Structural Determination of the La@C82 Isomer. The Journal of Physical Chemistry B. 2001; 105(15): 2971-2974. doi: 10.1021/jp003930d
26. Gupta RK. NanoCarbon: A Wonder Material for Energy Applications. Springer Nature Singapore; 2024. doi: 10.1007/978-981-99-9935-4
27. Ghosh T, Banerji P, Das NC. Synthesis methods for the preparation of fullerenes. In: Joseph K, Wilson R, George G, Appukuttan S (editors). Zero-Dimensional Carbon Nanomaterials. Elsevier; 2024. pp. 135-151.
28. Dmitruk NL. Effect of chemical modification of thin C60 fullerene films on the fundamental absorption edge. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2010; 13(2): 180-185. doi: 10.15407/spqeo13.02.180
29. Wang W, Hanindita F, Hamamoto Y, et al. Fully conjugated azacorannulene dimer as large diaza[80]fullerene fragment. Nature Communications. 2022; 13(1): 1498. doi: 10.1038/s41467-022-29106-w
30. Pesado-Gómez C, Serrano-García JS, Amaya-Flórez A, et al. Fullerenes: Historical background, novel biological activities versus possible health risks. Coordination Chemistry Reviews. 2024; 501: 215550. doi: 10.1016/j.ccr.2023.215550
31. Baskar AV, Benzigar MR, Talapaneni SN, et al. Self‐Assembled Fullerene Nanostructures: Synthesis and Applications. Advanced Functional Materials. 2021; 32(6). doi: 10.1002/adfm.202106924
32. Heredia DA, Durantini AM, Durantini JE, et al. Fullerene C60 derivatives as antimicrobial photodynamic agents. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2022; 51: 100471. doi: 10.1016/j.jphotochemrev.2021.100471
33. Chae SR, Therezien M, Budarz JF, et al. Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size. Journal of Nanoparticle Research. 2011; 13(10): 5121-5127. doi: 10.1007/s11051-011-0492-y
34. Modi A, Koratkar N, Lass E, et al. Miniaturized gas ionization sensors using carbon nanotubes. Nature. 2003; 424(6945): 171-174. doi: 10.1038/nature01777
35. Gallo M, Favila A, Glossman-Mitnik D. DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chemical Physics Letters. 2007; 447(1-3): 105-109. doi: 10.1016/j.cplett.2007.08.098
36. Djordjevic A, Srdjenovic B, Seke M, et al. Review of Synthesis and Antioxidant Potential of Fullerenol Nanoparticles. Journal of Nanomaterials. 2015; 2015: 1-15. doi: 10.1155/2015/567073
37. Molinari R, Palmisano L, Drioli E, et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. Journal of Membrane Science. 2002; 206(1-2): 399–415 doi: 10.1016/S0376-7388(01)00785-2
38. Zhu Q, Cai Z, Zhou P, et al. Recent progress of membrane technology for chiral separation: A comprehensive review. Separation and Purification Technology. 2023; 309: 123077. doi: 10.1016/j.seppur.2022.123077
39. Choi JY, Ho-Bum P. Separation Membrane Including Graphene. US 9,713,794, 25 July 2017.
40. Adeola AO, Nomngongo PN. Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers. 2022; 14(12): 2462. doi: 10.3390/polym14122462
41. Valladares Linares R, Li Z, Sarp S, et al. Forward osmosis niches in seawater desalination and wastewater reuse. Water Research. 2014; 66: 122-139. doi: 10.1016/j.watres.2014.08.021
42. Zhang X, Huang Q, Deng F, et al. Mussel-inspired fabrication of functional materials and their environmental applications: Progress and prospects. Applied Materials Today. 2017; 7: 222-238. doi: 10.1016/j.apmt.2017.04.001
43. Sri Abirami Saraswathi MS, Nagendran A, Rana D. Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review. Journal of Materials Chemistry A. 2019; 7(15): 8723-8745. doi: 10.1039/c8ta11460a
44. Dashti A, Harami HR, Rezakazemi M. Accurate prediction of solubility of gases within H 2 -selective nanocomposite membranes using committee machine intelligent system. International Journal of Hydrogen Energy. 2018; 43(13): 6614-6624. doi: 10.1016/j.ijhydene.2018.02.046
45. Pishnamazi M, Nakhjiri AT, Ghadiri M, et al. Computational fluid dynamics simulation of NO2 molecular sequestration from a gaseous stream using NaOH liquid absorbent through porous membrane contactors. Journal of Molecular Liquids. 2020; 313: 113584. doi: 10.1016/j.molliq.2020.113584
46. Kausar A. Efficiency of polymer/nanocarbon-based nanocomposite membranes in water treatment techniques. Journal of the Chinese Advanced Materials Society. 2018; 6(4): 508-526. doi: 10.1080/22243682.2018.1515659
47. Mashhadikhan S, Ahmadi R, Ebadi Amooghin A, et al. Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment. Renewable and Sustainable Energy Reviews. 2024; 189: 113902. doi: 10.1016/j.rser.2023.113902
48. Jhaveri JH, Murthy ZVP. Nanocomposite membranes. Desalination and Water Treatment. 2015; 57(55): 26803-26819. doi: 10.1080/19443994.2015.1120687
49. Sacco LN, Vollebregt S. Overview of Engineering Carbon Nanomaterials Such as Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates. Nanomaterials. 2023; 13(2): 260. doi: 10.3390/nano13020260
50. Sreeramareddygari M, Sureshkumar K, Thippeswamy R, et al. Various properties of zero-dimensional carbon nanomaterials–reinforced polymeric matrices. In: Joseph K, Wilson R, George G, Appukuttan S (editors). Zero-Dimensional Carbon Nanomaterials. Elsevier; 2024. pp. 357-384. doi: 10.1016/b978-0-323-99535-1.00012-3
51. Elrasheedy A, Nady N, Bassyouni M, et al. Metal Organic Framework Based Polymer Mixed Matrix Membranes: Review on Applications in Water Purification. Membranes. 2019; 9(7): 88. doi: 10.3390/membranes9070088
52. Ammar A, Al-Enizi AM, AlMaadeed MA, et al. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry. 2016; 9(2): 274-286. doi: 10.1016/j.arabjc.2015.07.006
53. Ganesh BM, Isloor AM, Ismail AF. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination. 2013; 313: 199-207. doi: 10.1016/j.desal.2012.11.037
54. Abdolmaleki A, Mohamadi Z, Fashandi H, et al. Synergistic contribution of sulfonated poly(ether sulfone) and iminodiacetic acid functionalized-graphene oxide nanosheets towards enhancing cationic dye wastewater purification using nanocomposite membranes. Chemical Engineering Journal. 2024; 481: 148622. doi: 10.1016/j.cej.2024.148622
55. Arahman N. Fabrication of Polyethersulfone membranes using nanocarbon as additive. International Journal of GEOMATE. 2018; 15(50). doi: 10.21660/2018.50.95424
56. Brunet L, Lyon DY, Hotze EM, et al. Comparative Photoactivity and Antibacterial Properties of C60 Fullerenes and Titanium Dioxide Nanoparticles. Environmental Science & Technology. 2009; 43(12): 4355-4360. doi: 10.1021/es803093t
57. Zhang BT, Zheng X, Li HF, et al. Application of carbon-based nanomaterials in sample preparation: A review. Analytica Chimica Acta. 2013; 784: 1-17. doi: 10.1016/j.aca.2013.03.054
58. Burakov AE, Galunin EV, Burakova IV, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety. 2018; 148: 702-712. doi: 10.1016/j.ecoenv.2017.11.034
59. Samonin VV, Nikonova VYu, Podvyaznikov ML. Carbon adsorbents on the basis of the hydrolytic lignin modified with fullerenes in producing. Russian Journal of Applied Chemistry. 2014; 87(2): 190-193. doi: 10.1134/s1070427214020116
60. Yashas SR, Shahmoradi B, Wantala K, et al. Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances. Polymer. 2021; 233: 124184. doi: 10.1016/j.polymer.2021.124184
61. Ma J, Guo Q, Gao HL, et al. Synthesis of C60/Graphene Composite as Electrode in Supercapacitors. Fullerenes, Nanotubes and Carbon Nanostructures. 2014; 23(6): 477-482. doi: 10.1080/1536383x.2013.865604
62. Perera MGN, Galagedara YR, Ren Y, et al. Fabrication of fullerenol-incorporated thin-film nanocomposite forward osmosis membranes for improved desalination performances. Journal of Polymer Research. 2018; 25(9). doi: 10.1007/s10965-018-1593-4
63. Shen Q, Xu S, Xu Z, et al. Novel thin‐film nanocomposite membrane with water‐soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution. Journal of Applied Polymer Science. 2019; 136(41). doi: 10.1002/app.48029
64. Vojdani M., and Giti R. Polyamide as a denture base material: A literature review. Journal of Dentistry, 2015; 16(1 Suppl): 1-9
65. Shrivastava A, Chakraborty M, Singh AK. Biocomposites with polyamide fibers (nylons and aramids). In: Karak N (editors). Advances in Biocomposites and their Applications. Elsevier; 2024. pp. 121-147. doi: 10.1016/b978-0-443-19074-2.00004-6
66. Tan X fei, Liu Y guo, Gu Y ling, et al. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology. 2016; 212: 318-333. doi: 10.1016/j.biortech.2016.04.093
67. Fang Y, Zhu C, Yang H, et al. Polyamide nanofiltration membranes by vacuum-assisted interfacial polymerization: Broad universality of Substrate, wide window of monomer concentration and high reproducibility of performance. Journal of Colloid and Interface Science. 2024; 655: 327-334. doi: 10.1016/j.jcis.2023.11.002
68. Plisko TV, Liubimova AS, Bildyukevich AV, et al. Fabrication and characterization of polyamide-fullerenol thin film nanocomposite hollow fiber membranes with enhanced antifouling performance. Journal of Membrane Science. 2018; 551: 20-36. doi: 10.1016/j.memsci.2018.01.015
69. Dmitrenko ME, Penkova AV, Kuzminova AI, et al. Development and investigation of novel polyphenylene isophthalamide pervaporation membranes modified with various fullerene derivatives. Separation and Purification Technology. 2019; 226: 241-251. doi: 10.1016/j.seppur.2019.05.092
70. Taheri M. Advances in Nanohybrid Membranes for Dye Reduction: A Comprehensive Review. Global Challenges. 2023; 8(1). doi: 10.1002/gch2.202300052
71. Inamuddin, Khan A. Sustainable Materials and Systems for Water Desalination. Springer International Publishing; 2021. doi: 10.1007/978-3-030-72873-1
72. Jani M, Arcos-Pareja JA, Ni M. Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment. Molecules. 2020; 25(21): 4934. doi: 10.3390/molecules25214934
73. Liu Y, Phillips B, Li W, et al. Fullerene-Tailored Graphene Oxide Interlayer Spacing for Energy-Efficient Water Desalination. ACS Applied Nano Materials. 2018; 1(11): 6168-6175. doi: 10.1021/acsanm.8b01375
74. Yang H, Dong G, Qin L, et al. Polyamide nanofiltration membranes mediated by mesoporous silica nanosheet interlayers display substantial desalination performance enhancement. Journal of Membrane Science. 2024; 693: 122387. doi: 10.1016/j.memsci.2023.122387
75. Alekseeva OV, Bagrovskaya NA, Noskov AV. Sorption of heavy metal ions by fullerene and polystyrene/fullerene film compositions. Protection of Metals and Physical Chemistry of Surfaces. 2016; 52(3): 443-447. doi: 10.1134/s2070205116030035
76. Jin X, Hu JY, Tint ML, et al. Estrogenic compounds removal by fullerene-containing membranes. Desalination. 2007; 214(1-3): 83-90. doi: 10.1016/j.desal.2006.10.019
77. Sudareva NN, Penkova AV, Kostereva TA, et al. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites. Express Polymer Letters. 2012; 6(3): 178-188. doi: 10.3144/expresspolymlett.2012.20
78. Penkova AV, Polotskaya GA, Toikka AM, et al. Structure and Pervaporation Properties of Poly(phenylene‐iso‐phthalamide) Membranes Modified by Fullerene C60. Macromolecular Materials and Engineering. 2009; 294(6-7): 432-440. doi: 10.1002/mame.200800362
79. Serbanescu OS, Voicu SI, Thakur VK. Polysulfone functionalized membranes: Properties and challenges. Materials Today Chemistry. 2020; 17: 100302. doi: 10.1016/j.mtchem.2020.100302
80. Esfahani MR, Aktij SA, Dabaghian Z, et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology. 2019; 213: 465-499. doi: 10.1016/j.seppur.2018.12.050
81. Penkova AV, Dmitrenko ME, Sokolova MP, et al. Impact of fullerene loading on the structure and transport properties of polysulfone mixed-matrix membranes. Journal of Materials Science. 2016; 51(16): 7652-7659. doi: 10.1007/s10853-016-0047-9
82. John N. Fullerene and nanodiamond-based polymer nanocomposite membranes and their pervaporation performances. Polymer Nanocomposite Membranes for Pervaporation. Published online 2020: 153-173. doi: 10.1016/b978-0-12-816785-4.00007-0
83. Aryafard E, Rahmatmand B, Rahimpour MR. Application of computational fluid dynamics technique in pervaporation processes. Current Trends and Future Developments on (Bio-) Membranes. Published online 2022: 247-268. doi: 10.1016/b978-0-12-822294-2.00012-6
84. Karimi MB, Mohammadi F, Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. International Journal of Hydrogen Energy. 2019; 44(54): 28919-28938. doi: 10.1016/j.ijhydene.2019.09.096
85. Peron J, Mani A, Zhao X, et al. Properties of Nafion® NR-211 membranes for PEMFCs. Journal of Membrane Science. 2010; 356(1-2): 44-51. doi: 10.1016/j.memsci.2010.03.025
86. Maiti TK, Singh J, Majhi J, et al. Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints. Polymer. 2022; 255: 125151. doi: 10.1016/j.polymer.2022.125151
87. Wan YH, Sun J, Jian QP, et al. A Nafion/polybenzimidazole composite membrane with consecutive proton-conducting pathways for aqueous redox flow batteries. Journal of Materials Chemistry A. 2022; 10(24): 13021-13030. doi: 10.1039/d2ta01746f
88. Li Y, He G, Wang S, et al. Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A. 2013; 1(35): 10058. doi: 10.1039/c3ta01652h
89. Tasaki K, Gasa J, Wang H, et al. Fabrication and characterization of fullerene–Nafion composite membranes. Polymer. 2007; 48(15): 4438-4448. doi: 10.1016/j.polymer.2007.05.049
90. Lyon DY, Adams LK, Falkner JC, et al. Antibacterial Activity of Fullerene Water Suspensions: Effects of Preparation Method and Particle Size. Environmental Science & Technology. 2006; 40(14): 4360-4366. doi: 10.1021/es0603655
91. Alshammari AH, Alshammari M, Ibrahim M, et al. Processing polymer film nanocomposites of polyvinyl chloride – Polyvinylpyrrolidone and MoO3 for optoelectronic applications. Optics & Laser Technology. 2024; 168: 109833. doi: 10.1016/j.optlastec.2023.109833
92. Hu X, Zhang Z, Gholizadeh M, et al. Coke Formation during Thermal Treatment of Bio-oil. Energy & Fuels. 2020; 34(7): 7863-7914. doi: 10.1021/acs.energyfuels.0c01323
93. Zheng T, Fan L, Zhou H, et al. Engineering of Electron Extraction and Defect Passivation via Anion-Doped Conductive Fullerene Derivatives as Interlayers for Efficient Invert Perovskite Solar Cells. ACS Applied Materials & Interfaces. 2020; 12(22): 24747-24755. doi: 10.1021/acsami.0c04315
94. Djordjević A, Bogdanović GM, Dobrić S. Fullerenes in biomedicine. Journal of the Balkan Union of Oncology. 2006; 11(4): 391-404
95. Kundu D, Dutta D, Joseph A, et al. Safeguarding drinking water: A brief insight on characteristics, treatments and risk assessment of contamination. Environmental Monitoring and Assessment. 2024; 196(2). doi: 10.1007/s10661-024-12311-z
96. Amooghin AE, Sanaeepur H, Pedram MZ, et al. New advances in polymeric membranes for CO2 separation. Polymer Science: Research Advances, Practical Applications and Educational Aspects. Formatex Research Center; 2016. pp. 354-368
97. Vladisavljević GT. Preparation of microparticles and nanoparticles using membrane-assisted dispersion, micromixing, and evaporation processes. Particuology. 2024; 84: 30-44. doi: 10.1016/j.partic.2023.03.003
DOI: https://doi.org/10.24294/can.v7i2.4945
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ayesha Kausar
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.