State-of-the-art of electrospun nanocomposite nanofibers and membranes with carbon nanoparticles—Prevailing progressions

Ayesha Kausar, Ishaq Ahmad

234 (Abstract) 108 (PDF)

Keywords


electrospinning; nanofibers; polymer; nanocomposite; membrane

Full Text:

PDF


References


1. Huang X, Chen Y. Surface grafting of cellulose triacetate hollow fiber membranes with Ag@ZnO-hyperbranched polyglycerols nanoparticles for constructing antifouling and antibacterial surfaces. Characterization and Application of Nanomaterials 2023; 6(1). doi: 10.24294/can.v6i1.2538

2. Wang JJ, Shen ZH, Zhou WY, et al. Mesoscale computational prediction of lightweight, thermally conductive polymer nanocomposites containing graphene-wrapped hollow particle fillers. Characterization and Application of Nanomaterials 2021; 4(1): 40. doi: 10.24294/can.v4i1.1292

3. Kausar A, Ahmad I, Lam TD. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress. Characterization and Application of Nanomaterials 2023; 6(1). doi: 10.24294/can.v6i1.2637

4. Pathak AK, Yokozeki T. Recycled Carbon nanofiber-polypropylene nanocomposite: A step towards sustainable structural material development. Journal of Composites Science 2022; 6(11): 332. doi: 10.3390/jcs6110332

5. Ganguly S. Preparation/processing of polymer-graphene composites by different techniques. In: Polymer Nanocomposites Containing Graphene. Elsevier; 2022. pp. 45–74. doi: 10.1016/b978-0-12-821639-2.00015-x

6. Nemati S, Kim S, Shin YM, et al. Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence 2019; 6(1). doi: 10.1186/s40580-019-0209-y

7. Liu R, Xu X, Zhuang X, et al. Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydrate Polymers 2014; 101: 1116–1121. doi: 10.1016/j.carbpol.2013.10.056

8. Oliveira JE, Mattoso LHC, Orts WJ, et al. Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: A comparative study. Advances in Materials Science and Engineering 2013; 2013: 1–14. doi: 10.1155/2013/409572

9. Marjuban SMH, Rahman M, Duza SS, et al. Recent advances in centrifugal spinning and their applications in tissue engineering. Polymers 2023; 15(5): 1253. doi: 10.3390/polym15051253

10. Madhi Alsharif A. Power law liquid jets’ trajectories and instability during centrifugal spinning. Alexandria Engineering Journal 2023; 68: 301–314. doi: 10.1016/j.aej.2023.01.036

11. Duan Y, Ding Y, Xu Z, et al. Helix electrohydrodynamic printing of highly aligned serpentine micro/nanofibers. Polymers 2017; 9(12): 434. doi: 10.3390/polym9090434

12. Zhang Z, He H, Fu W, et al. Electro-hydrodynamic direct-writing technology toward patterned ultra-thin fibers: Advances, materials and applications. Nano Today 2020; 35: 100942. doi: 10.1016/j.nantod.2020.100942

13. Mahmoudi N, Simchi A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. Materials Science and Engineering: C 2017; 70: 121–131. doi: 10.1016/j.msec.2016.08.063

14. Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. Journal of Controlled Release 2021; 334: 463–484. doi: 10.1016/j.jconrel.2021.03.033

15. Yadav TC, Srivastava AK, Mishra P, et al. Electrospinning: An Efficient Biopolymer-Based Micro- and Nanofibers Fabrication Technique. Next Generation Biomanufacturing Technologies. ACS Publications; 2019. pp. 209–241. doi: 10.1021/bk-2019-1329.ch010

16. Zheng Q, Cao WQ, Zhai H, et al. Tailoring carbon-based nanofiber microstructures for electromagnetic absorption, shielding, and devices. Materials Chemistry Frontiers 2023; 7(9): 1737–1759. doi: 10.1039/d2qm01271e

17. Xu H, Yagi S, Ashour S, et al. A review on current nanofiber technologies: Electrospinning, centrifugal spinning, and electro‐centrifugal spinning. Macromolecular Materials and Engineering 2022; 308(3). doi: 10.1002/mame.202200502

18. Al-Dhahebi AM, Ling J, Krishnan SG, et al. Electrospinning research and products: The road and the way forward. Applied Physics Reviews 2022; 9(1). doi: 10.1063/5.0077959

19. Bora P, Bhuyan C, Borah AR, et al. Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chemical Communications 2023; 59(76): 11320–11336. doi: 10.1039/d3cc03490a

20. Kumar V, Alam MN, Manikkavel A, et al. Silicone rubber composites reinforced by carbon nanofillers and their hybrids for various applications: A review. Polymers 2021; 13(14): 2322. doi: 10.3390/polym13142322

21. Alatawna A, Birenboim M, Nadiv R, et al. The effect of compatibility and dimensionality of carbon nanofillers on cement composites. Construction and Building Materials 2020; 232: 117141. doi: 10.1016/j.conbuildmat.2019.117141

22. Kausar A. Nanocarbon in polymeric nanocomposite hydrogel—Design and multi-functional tendencies. Polymer-Plastics Technology and Materials 2020; 59(14): 1505–1521. doi: 10.1080/25740881.2020.1757106

23. Mas B, Fernández-Blázquez JP, Duval J, et al. Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon 2013; 63: 523–529. doi: 10.1016/j.carbon.2013.07.029

24. Choudhary V, Gupt A. Polymer/carbon nanotube nanocomposites. Carbon Nanotubes - Polymer Nanocomposites 2011. doi: 10.5772/18423

25. Chu CC, White KL, Liu P, et al. Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets. Carbon 2012; 50(12): 4711–4721. doi: 10.1016/j.carbon.2012.05.063

26. Al-Osaimi J, Alhosiny N, Badawi A, Abdallah S. The effects of CNTs types on the structural and electrical properties of CNTs/PMMA nanocomposite films. International Journal of Engineering & Technology 2013; 13: 77–79.

27. Khan NI, Halder S, Das S, et al. Graphitic nanoparticles functionalized with epoxy moiety for enhancing the mechanical performance of hybrid carbon fiber reinforced polymer laminated composites. Polymer Composites 2020; 42(2): 678–692. doi: 10.1002/pc.25857

28. Latif Z, Ali M, Lee EJ, et al. Thermal and mechanical properties of nano-carbon-reinforced polymeric nanocomposites: A review. Journal of Composites Science 2023; 7(10): 441. doi: 10.3390/jcs7100441

29. Maliszewska I, Czapka T. Electrospun polymer nanofibers with antimicrobial activity. Polymers 2022; 14(9): 1661. doi: 10.3390/polym14091661

30. Al-Abduljabbar A, Farooq I. Electrospun polymer nanofibers: Processing, properties, and applications. Polymers 2022; 15(1): 65. doi: 10.3390/polym15010065

31. Peng K, Huang H. Investigating the origin of the core-shell structure of polymeric nanofibers during fabrication process at the atomistic scale. Applied Surface Science 2023; 608: 155105. doi: 10.1016/j.apsusc.2022.155105

32. Dou L, Yang B, Lan S, et al. High‐entropy‐nanofibers enhanced polymer nanocomposites for high‐performance energy storage. Advanced Energy Materials 2023; 13(11). doi: 10.1002/aenm.202203925

33. Zhao G, Shi L, Yang G, et al. 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. Journal of Materials Chemistry A 2023; 11(2): 512–547. doi: 10.1039/d2ta05984c

34. Wortmann M, Westphal M, Kaltschmidt B, et al. Nanofibers are a matter of perspective: Effects of methodology and subjectivity on diameter measurements. Nanoscale Advances 2023; 5(21): 5900–5906. doi: 10.1039/d3na00528c

35. Sharma A, Kokil GR, He Y, et al. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioactive Materials 2023; 24: 535–550. doi: 10.1016/j.bioactmat.2023.01.003

36. Zhang Y, Zhu B, Cai X, et al. Uniform doping of onion-like carbon nanofillers in carbon nanofibers via functionalization and in-situ polymerization for improved fiber graphitic structure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023; 674: 131874. doi: 10.1016/j.colsurfa.2023.131874

37. Sacco LN, Vollebregt S. Overview of engineering carbon nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and nanodiamonds and other carbon allotropes inside porous anodic alumina (PAA) templates. Nanomaterials 2023; 13(2): 260. doi: 10.3390/nano13020260

38. Kausar A. State-of-the-art of fullerene-based nanocomposite nanofibers—Enterprise and technological amenabilities. Polymer-Plastics Technology and Materials 2023; 62(9): 1157–1177. doi: 10.1080/25740881.2023.2204923

39. Gobiraman A, Santhosh N, Vishvanathperumal S. Biodegradable Polymeric Nanofibers Prepared via Electrospinning. Electrospun Nanofibres. CRC Press; 2023. pp. 167–190. doi: 10.1201/9781003333814-9

40. Huang T, Marshall LR, Armantrout JE, et al. Production of Nanofibers by Melt Spinning. U.S. Patent 8,277,711, 2 October 2012.

41. Ye P, Guo Q, Zhang Z, et al. High-speed centrifugal spinning polymer slip mechanism and PEO/PVA composite fiber preparation. Nanomaterials 2023; 13(7): 1277. doi: 10.3390/nano13071277

42. Rajendaren V, Saufi SM, Zahari MAKM. Effect of spinning parameter on the properties and performance of hollow fiber supported liquid membrane for levulinic acid extraction. Korean Journal of Chemical Engineering 2023; 40(7): 1746–1759. doi: 10.1007/s11814-023-1439-6

43. Shen H, Sun T, Zhou J. Recent progress in regenerated cellulose fibers by wet spinning. Macromolecular Materials and Engineering 2023; 308(10). doi: 10.1002/mame.202300089

44. Tan NPB, Cabatingan LK, Lim KJA. Synthesis of TiO2 nanofiber by solution blow spinning (SBS) method. Key Engineering Materials 2020; 858: 122–128. doi: 10.4028/www.scientific.net/kem.858.122

45. Medeiros ES, Glenn GM, Klamczynski AP, et al. Solution blow spinning: A new method to produce micro‐ and nanofibers from polymer solutions. Journal of Applied Polymer Science 2009; 113(4): 2322–2330. doi: 10.1002/app.30275

46. Wu G, Du H, Cha YL, et al. A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sensors and Actuators B: Chemical 2023; 375: 132858. doi: 10.1016/j.snb.2022.132858

47. Scaffaro R, Settanni L, Gulino EF. Release profiles of carvacrol or chlorhexidine of PLA/graphene nanoplatelets membranes prepared using electrospinning and solution blow spinning: A comparative study. Molecules 2023; 28(4): 1967. doi: 10.3390/molecules28041967

48. Jeong C, Starr FW, Beers KL, et al. Influence of functionalization on the crystallinity and basic thermodynamic properties of polyethylene. Macromolecules 2023; 56(11): 3873–3883. doi: 10.1021/acs.macromol.2c02569

49. Fajardo-Diaz JL, Morelos-Gomez A, Cruz-Silva R, et al. Low-pressure reverse osmosis membrane made of cellulose nanofiber and carbon nanotube polyamide nano-nanocomposite for high purity water production. Chemical Engineering Journal 2022; 448: 137359. doi: 10.1016/j.cej.2022.137359

50. Patil PT, Anwane RS, Kondawar SB. Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Materials Science 2015; 10: 195–204. doi: 10.1016/j.mspro.2015.06.041

51. Ostheller ME, Balakrishnan NK, Beukenberg K, et al. Pilot-scale melt electrospinning of polybutylene succinate fiber mats for a biobased and biodegradable face mask. Polymers 2023; 15(13): 2936. doi: 10.3390/polym15132936

52. Yu DG, Li Q, Song W, et al. Advanced technique-based combination of innovation education and safety education in higher education. Journal of Chemical Education 2023; 100(2): 507–516. doi: 10.1021/acs.jchemed.2c00568

53. Chen J, Wang Y, Liu Y, et al. Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption. Carbon 2023; 208: 82–91. doi: 10.1016/j.carbon.2023.03.043

54. Nguyen TD, Roh S, Nguyen MTN, et al. Structural control of nanofibers according to electrospinning process conditions and their applications. Micromachines 2023; 14(11): 2022. doi: 10.3390/mi14112022

55. Huang Y, Duan Y, Ding Y, et al. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Scientific Reports 2014; 4(1). doi: 10.1038/srep05949

56. Jiang J, Liu Y, Chen J, et al. In-situ molding of micro three-dimensional columnar structure by electric-field-focused electrospinning. Materials Today Communications 2023; 35: 105589. doi: 10.1016/j.mtcomm.2023.105589

57. Akhoundi B, Modanloo V, Mashayekhi A. Design and manufacture of an additive manufacturing printer based on 3D melt electrospinning writing of polymer. International Polymer Processing 2023; 38(3): 424–433. doi: 10.1515/ipp-2023-4352

58. He X, Gu J, Hao Y, et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal 2022; 450: 137937. doi: 10.1016/j.cej.2022.137937

59. Zhang P, Su J, Guo J, et al. Influence of carbon nanotube on properties of concrete: A review. Construction and Building Materials 2023; 369: 130388. doi: 10.1016/j.conbuildmat.2023.130388

60. Abubakre OK, Medupin RO, Akintunde IB, et al. Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: A review. Journal of Science: Advanced Materials and Devices 2023; 8(2): 100557. doi: 10.1016/j.jsamd.2023.100557

61. Arjmandi SK, Khademzadeh Yeganeh J, Zare Y, et al. Development of Kovacs model for electrical conductivity of carbon nanofiber–polymer systems. Scientific Reports 2023; 13(1). doi: 10.1038/s41598-022-26139-5

62. Zahid M, Anum R, Siddique S, et al. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review. Journal of Thermoplastic Composite Materials 2021; 36(4): 1717–1761. doi: 10.1177/08927057211022408

63. Noh YJ, Joh HI, Yu J, et al. Ultra-high dispersion of graphene in polymer composite via solvent freefabrication and functionalization. Scientific Reports 2015; 5(1). doi: 10.1038/srep09141

64. Simotwo SK, DelRe C, Kalra V. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers. ACS Applied Materials & Interfaces 2016; 8(33): 21261–21269. doi: 10.1021/acsami.6b03463

65. Zhang F, Yang K, Liu G, et al. Recent advances on graphene: Synthesis, properties and applications. Composites Part A: Applied Science and Manufacturing 2022; 160: 107051. doi: 10.1016/j.compositesa.2022.107051

66. Yang H, Zheng H, Duan Y, et al. Nanocellulose-graphene composites: Preparation and applications in flexible electronics. International Journal of Biological Macromolecules 2023; 253: 126903. doi: 10.1016/j.ijbiomac.2023.126903

67. Chen L, Shen Y, Liu Z, et al. Experimental and modeling investigation on thermodynamic effect of graphene doped shape memory epoxy composites. Polymer 2022; 239: 124430. doi: 10.1016/j.polymer.2021.124430

68. Zhuang YF, Cao XY, Zhang JN, et al. Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance. Composites Part A: Applied Science and Manufacturing 2019; 120: 49–55. doi: 10.1016/j.compositesa.2019.02.019

69. Maccaferri E, Mazzocchetti L, Benelli T, et al. Morphology, thermal, mechanical properties and ageing of nylon 6,6/graphene nanofibers as Nano2 materials. Composites Part B: Engineering 2019; 166: 120–129. doi: 10.1016/j.compositesb.2018.11.096

70. Kausar A, Ahmad I, Eisa MH, et al. Manufacturing strategies for graphene derivative nanocomposites—Current status and fruitions. Nanomanufacturing 2023; 3(1): 1–19. doi: 10.3390/nanomanufacturing3010001

71. Weise BA, Wirth KG, Völkel L, et al. Pilot-scale fabrication and analysis of graphene-nanocomposite fibers. Carbon 2019; 144: 351–361. doi: 10.1016/j.carbon.2018.12.042

72. Leyva-Porras C, Ornelas-Gutiérrez C, Miki-Yoshida M, et al. EELS analysis of nylon 6 nanofibers reinforced with nitroxide-functionalized graphene oxide. Carbon 2014; 70: 164–172. doi: 10.1016/j.carbon.2013.12.087

73. Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 2010; 43(16): 6716–6723. doi: 10.1021/ma1009337

74. Zhang Y, Liu H, Liu M, et al. Effects of different amine-functionalized graphene oxide on the mechanical and thermal properties of polyimide composites. High Performance Polymers 2023; 35(9): 963–973. doi: 10.1177/09540083231199766

75. Afzal HM, Shehzad F, Zubair M, et al. Influence of microwave irradiation on thermal properties of PVA and PVA/graphene nanocomposites. Journal of Thermal Analysis and Calorimetry 2019; 139(1): 353–365. doi: 10.1007/s10973-019-08419-x

76. Mohd Abdah MAA, Zubair NA, Azman NHN, et al. Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor. Materials Chemistry and Physics 2017; 192: 161–169. doi: 10.1016/j.matchemphys.2017.01.058

77. Huo J, Zhang G, Yuan X, et al. Electrospraying graphene nanosheets on polyvinyl alcohol nanofibers for efficient thermal management materials. ACS Applied Nano Materials 2023; 6(7): 6241–6246. doi: 10.1021/acsanm.3c00563

78. Kadoshima T, Sakaguchi H, Eiraku M. Telencephalic tissue formation in 3D stem cell culture. In: Organ Regeneration Based on Developmental Biology. Springer; 2017. doi: 10.1007/978-981-10-3768-9

79. Jun L, Chen Q, Fu W, et al. Electrospun Yb-doped In2O3 nanofiber field-effect transistors for highly sensitive ethanol sensors. ACS Applied Materials & Interfaces 2020; 12(34): 38425–38434. doi: 10.1021/acsami.0c12259

80. Cao X, Wang T, Jiao L. Transition-metal (Fe, Co, and Ni)-based nanofiber electrocatalysts for water splitting. Advanced Fiber Materials 2021; 3(4): 210–228. doi: 10.1007/s42765-021-00065-z

81. Wang J, Wang C, Hou K, et al. Electrospinning of bitter gourd shape CoNiSe2@N carbon nanofibers as absorbers for electromagnetic wave attenuation. Composites Part A: Applied Science and Manufacturing 2023; 175: 107770. doi: 10.1016/j.compositesa.2023.107770

82. Li B, Yuan H, Zhang Y. Transparent PMMA-based nanocomposite using electrospun graphene-incorporated PA-6 nanofibers as the reinforcement. Composites Science and Technology 2013; 89: 134–141. doi: 10.1016/j.compscitech.2013.09.022

83. Abdali H, Ajji A. Preparation of electrospun nanocomposite nanofibers of polyaniline/poly(methyl methacrylate) with amino-functionalized graphene. Polymers 2017; 9(12): 453. doi: 10.3390/polym9090453

84. Ramazani S, Karimi M. Study the molecular structure of poly(ε-caprolactone)/graphene oxide and graphene nanocomposite nanofibers. Journal of the Mechanical Behavior of Biomedical Materials 2016; 61: 484–492. doi: 10.1016/j.jmbbm.2016.04.020

85. Bagheri M, Mahmoodzadeh A. Polycaprolactone/graphene nanocomposites: Synthesis, characterization and mechanical properties of electrospun nanofibers. Journal of Inorganic and Organometallic Polymers and Materials 2019; 30(5): 1566–1577. doi: 10.1007/s10904-019-01340-8

86. Ramazani S, Karimi M. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Materials Science and Engineering: C 2015; 56: 325–334. doi: 10.1016/j.msec.2015.06.045

87. Suja PS, Reshmi CR, Sagitha P, et al. Electrospun nanofibrous membranes for water purification. Polymer Reviews 2017; 57(3): 467–504. doi: 10.1080/15583724.2017.1309664

88. Wypych G. Functional Fillers: Chemical Composition, Morphology, Performance, Applications. Elsevier; 2023.

89. Zhang F, Si Y, Yu J, et al. Electrospun porous engineered nanofiber materials: A versatile medium for energy and environmental applications. Chemical Engineering Journal 2023; 456: 140989. doi: 10.1016/j.cej.2022.140989

90. Xu X, Si Y, Zhao Y, et al. Electrospun textile strategies in tendon to bone junction reconstruction. Advanced Fiber Materials 2022; 5(3): 764–790. doi: 10.1007/s42765-022-00233-9

91. Chen K, Li Y, Li Y, et al. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. Journal of Nanobiotechnology 2023; 21(1). doi: 10.1186/s12951-023-01987-z

92. Mamun A, Kiari M, Sabantina L. A recent review of electrospun porous carbon nanofiber mats for energy storage and generation applications. Membranes 2023; 13(10): 830. doi: 10.3390/membranes13100830

93. Fan P, Ye C, Xu L. One-dimensional nanostructured electrode materials based on electrospinning technology for supercapacitors. Diamond and Related Materials 2023; 134: 109803. doi: 10.1016/j.diamond.2023.109803

94. Senthilkumar SH, Ramasubramanian B, Rao RP, et al. Advances in electrospun materials and methods for Li-Ion batteries. Polymers 2023; 15(7): 1622. doi: 10.3390/polym15071622

95. Widhiyanuriyawan D, Arifin Z, Muwaffaq A, et al. The effect of electrospinning precursor flow rate with rotating collector on ZnO nanofiber size results on double-layered DSSC photoanode fabrication. Evergreen 2023; 10(1): 504–509. doi: 10.5109/6782154

96. Zhang J, Liu J, Liu Y, et al. Design engineering of MOF-derived ZnO porous nanofibers functionalized with Pt clusters: Significantly improved acetone sensing properties. Sensors and Actuators B: Chemical 2024; 400: 134941. doi: 10.1016/j.snb.2023.134941

97. Liu J, Wang W, Li G, et al. Metal-organic framework-derived CuO tube-like nanofibers with high surface area and abundant porosities for enhanced room-temperature NO2 sensing properties. Journal of Alloys and Compounds 2023; 934: 167950. doi: 10.1016/j.jallcom.2022.167950

98. Wang P, Lv H, Cao X, et al. Recent progress of the preparation and application of electrospun porous nanofibers. Polymers 2023; 15(4): 921. doi: 10.3390/polym15040921

99. Zhang H, Luo X, Shi K, et al. Nanocarbon-based catalysts for esterification: Effect of carbon dimensionality and synergistic effect of the surface functional groups. Carbon 2019; 147: 134–145. doi: 10.1016/j.carbon.2019.02.079

100. Zhou S, Zhang H, Zhao Q, et al. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors. Carbon 2013; 52: 440–450. doi: 10.1016/j.carbon.2012.09.055

101. Wang N, Wang B, Wang W, et al. Structural design of electrospun nanofibers for electrochemical energy storage and conversion. Journal of Alloys and Compounds 2023; 935: 167920. doi: 10.1016/j.jallcom.2022.167920

102. Barhoum A, Pal K, Rahier H, et al. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today 2019; 17: 1–35. doi: 10.1016/j.apmt.2019.06.015

103. Liao HC, Ho CC, Chang CY, et al. Additives for morphology control in high-efficiency organic solar cells. Materials Today 2013; 16(9): 326–336. doi: 10.1016/j.mattod.2013.08.013

104. Howard JB, Noh S, Beier AE, et al. Fine tuning surface energy of poly(3-hexylthiophene) by heteroatom modification of the alkyl side chains. ACS Macro Letters 2015; 4(7): 725–730. doi: 10.1021/acsmacrolett.5b00328

105. Kurniawan M, Salim T, Tai KF, et al. Carrier dynamics in polymer nanofiber: Fullerene solar cells. The Journal of Physical Chemistry C 2012; 116(34): 18015–18022. doi: 10.1021/jp302968e

106. Loukelis K, Helal ZA, Mikos AG, et al. Nanocomposite bioprinting for tissue engineering applications. Gels 2023; 9(2): 103. doi: 10.3390/gels9020103

107. Navaratnam S, Selvaranjan K, Jayasooriya D, et al. Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment. Journal of Building Engineering 2023; 66: 105835. doi: 10.1016/j.jobe.2023.105835

108. Adapa SK, Jagadish. Prospects of natural fiber-reinforced polymer composites for additive manufacturing applications: A review. JOM 2023; 75(3): 920–940. doi: 10.1007/s11837-022-05670-w

109. Babu A, Aazem I, Walden R, et al. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chemical Engineering Journal 2023; 452: 139060. doi: 10.1016/j.cej.2022.139060

110. Wang X, Hsiao BS. Electrospun nanofiber membranes. Current Opinion in Chemical Engineering 2016; 12: 62–81. doi: 10.1016/j.coche.2016.03.001

111. Cui J, Li F, Wang Y, et al. Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology 2020; 250: 117116. doi: 10.1016/j.seppur.2020.117116

112. Zhao K, Tian X, Xing J, et al. Tunable mechanical behavior of collagen-based films: A comparison of celluloses in different geometries. International Journal of Biological Macromolecules 2022; 214: 120–127. doi: 10.1016/j.ijbiomac.2022.05.191

113. Saleem H, Trabzon L, Kilic A, et al. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination 2020; 478: 114178. doi: 10.1016/j.desal.2019.114178

114. Tlili I, Alkanhal TA. Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. Journal of Water Reuse and Desalination 2019; 9(3): 232–248. doi: 10.2166/wrd.2019.057




DOI: https://doi.org/10.24294/can.v6i2.4870

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ayesha Kausar, Ishaq Ahmad

License URL: https://creativecommons.org/licenses/by-nc/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.