Non-enzymatic detection of 17β-estradiol in real samples using PANI@CeO2 nanocomposite

Aditya Dam, Tanu Rajput, Sakshi Verma, Devendra Kumar

Article ID: 4768
Vol 7, Issue 2, 2024

VIEWS - 219 (Abstract) 60 (PDF)

Abstract


Herein, we developed a non-enzymatic biosensing platform using polyaniline (PANI) polymer matrix grafted with CeO2. The one-pot synthesized nanocomposite has been used for the detection of 17β-estradiol (E2). The homogeneous distribution of CeO2 onto the PANI matrix leads to an increase in surface area, conductivity, and effectiveness of the synthesized nanocomposite PANI@CeO2. The PANI@CeO2 nanocomposite was characterized using structural and morphological techniques. Further, the electrode fabrication was performed electrophoretically by depositing the PANI@CeO2 nanocomposite onto the ITO electrode. The PANI@CeO2/ITO showed enhanced electrochemical behavior as compared to PANI/ITO. Detection of E2 was carried out using the differential pulse voltametric technique (DPV). Linearity has been observed through the detection range of 1 µM–100 µM with LOD = 2.15 µM. The developed biosensor has been found to be stable and selective towards E2. It has been successfully utilized for the detection of E2 in real samples like tap water and human urine samples. Thus, this research encourages its use for more applications in clinical diagnosis and biomedical sciences.

Keywords


polyaniline; 17β-estradiol; biosensor; tap water; urine; CeO2

Full Text:

PDF


References


1. Wang Y, Zhao X, Zhang M, et al. A fluorescent amplification strategy for high-sensitive detection of 17 β-estradiol based on EXPAR and HCR. Analytica Chimica Acta. 2020; 1116: 1-8. doi: 10.1016/j.aca.2020.04.010

2. Pu H, Huang Z, Sun DW, et al. Recent advances in the detection of 17β-estradiol in food matrices: A review. Critical Reviews in Food Science and Nutrition. 2019; 59(13): 2144-2157. doi: 10.1080/10408398.2019.1611539

3. Orozco-Hernández L, Gómez-Oliván LM, Elizalde-Velázquez A, et al. 17-β-Estradiol: Significant reduction of its toxicity in water treated by photocatalysis. Science of The Total Environment. 2019; 669: 955-963. doi: 10.1016/j.scitotenv.2019.03.190

4. Minopoli A, Sakač N, Lenyk B, et al. LSPR-based colorimetric immunosensor for rapid and sensitive 17β-estradiol detection in tap water. Sensors and Actuators B: Chemical. 2020; 308: 127699. doi: 10.1016/j.snb.2020.127699

5. Yao X, Wang Z, Dou L, et al. An innovative immunochromatography assay for highly sensitive detection of 17β-estradiol based on an indirect probe strategy. Sensors and Actuators B: Chemical. 2019; 289: 48-55. doi: 10.1016/j.snb.2019.03.078

6. Triviño JJ, Gómez M, Valenzuela J, et al. Determination of a natural (17β-estradiol) and a synthetic (17α-ethinylestradiol) hormones in pharmaceutical formulations and urine by adsorptive stripping voltammetry. Sensors and Actuators B: Chemical. 2019; 297: 126728. doi: 10.1016/j.snb.2019.126728

7. Goswami B, Mahanta D. Fe3O4-Polyaniline Nanocomposite for Non-enzymatic Electrochemical Detection of 2,4-Dichlorophenoxyacetic Acid. ACS Omega. 2021; 6(27): 17239-17246. doi: 10.1021/acsomega.1c00983

8. Paneru S, Kumar D. A Novel Electrochemical Biosensor Based on Polyaniline-Embedded Copper Oxide Nanoparticles for High-Sensitive Paraoxon-Ethyl (PE) Detection. Applied Biochemistry and Biotechnology. 2023; 195(7): 4485-4502. doi: 10.1007/s12010-023-04350-y

9. Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers. 2020; 13(1): 49. doi: 10.3390/polym13010049

10. Petruleviciene M, Juodkazyte J, Savickaja I, et al. BiVO4-based coatings for non-enzymatic photoelectrochemical glucose determination. Journal of Electroanalytical Chemistry. 2022; 918: 116446. doi: 10.1016/j.jelechem.2022.116446

11. Emir G, Dilgin Y, Ramanaviciene A, et al. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchemical Journal. 2021; 161: 105751. doi: 10.1016/j.microc.2020.105751

12. Adeosun WA, Asiri AM, Marwani HM, et al. Enzymeless Electrocatalytic Detection of Uric Acid Using Polydopamine/Polypyrrole Copolymeric film. ChemistrySelect. 2020; 5(1): 156-164. doi: 10.1002/slct.201903628

13. Ashwini IS, Pattar J, Anjaneyulu P, et al. Synthesis and electrical properties of polyaniline–cerium oxide composites. Synthetic Metals. 2020; 270: 116588. doi: 10.1016/j.synthmet.2020.116588

14. Rossignatti BC, Vieira AP, Barbosa MS, et al. Thin Films of Polyaniline-Based Nanocomposites with CeO2 and WO3 Metal Oxides Applied to the Impedimetric and Capacitive Transducer Stages in Chemical Sensors. Polymers. 2023; 15(3): 578. doi: 10.3390/polym15030578

15. Sharma SS, Palatty S. Advances in functionalized polyaniline nanocomposites for electrochemical sensing and energy storage applications. Applications of Multifunctional Nanomaterials. 2023; 2023: 177-196. doi: 10.1016/b978-0-12-820557-0.00004-7

16. Beygisangchin M, Abdul Rashid S, Shafie S, et al. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers. 2021; 13(12): 2003. doi: 10.3390/polym13122003

17. Hussein MA, Khan A, Alamry KA. A highly efficient electrochemical sensor containing polyaniline/cerium oxide nanocomposites for hydrogen peroxide detection. RSC Advances. 2022; 12(49): 31506-31517. doi: 10.1039/d2ra05041b

18. Lei Y, Qiu Z, Tan N, et al. Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution. Progress in Organic Coatings. 2020; 139: 105430. doi: 10.1016/j.porgcoat.2019.105430

19. Parvatikar N, Jain S, Bhoraskar SV, et al. Spectroscopic and electrical properties of polyaniline/CeO2 composites and their application as humidity sensor. Journal of Applied Polymer Science. 2006; 102(6): 5533-5537. doi: 10.1002/app.24636

20. Li C, Wang J, Wen Y, et al. Polyaniline/CeO2 Nanofiber Composite Membrane as a Promoter of Pt for Formic Acid Electro-Oxidation. ECS Electrochemistry Letters. 2012; 2(1): H1-H4. doi: 10.1149/2.001302eel

21. Saranya J, Sreeja BS, Padmalaya G, et al. Ultrasonic Assisted Cerium Oxide/Graphene Oxide Hybrid: Preparation, Anti-proliferative, Apoptotic Induction and G2/M Cell Cycle Arrest in HeLa Cell Lines. Journal of Inorganic and Organometallic Polymers and Materials. 2020; 30(7): 2666-2676. doi: 10.1007/s10904-019-01403-w

22. Huang H, Guo ZC. Preparation and Characterization of Conductive Polyaniline/Cerium Dioxide Composites. Materials Science Forum. 2010; 663-665: 686-689. doi: 10.4028/www.scientific.net/msf.663-665.686

23. Wang S, Huang Z, Wang J, et al. Thermal stability of several polyaniline/rare earth oxide composites (I): polyaniline/CeO2 composites. Journal of Thermal Analysis and Calorimetry. 2011; 107(3): 1199-1203. doi: 10.1007/s10973-011-1777-1

24. Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corrosion Science. 2018; 137: 111-126. doi: 10.1016/j.corsci.2018.03.038

25. Elgrishi N, Rountree KJ, McCarthy BD, et al. A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education. 2018; 95(2): 197-206. doi: 10.1021/acs.jchemed.7b00361

26. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1979; 101: 19-28. doi: 10.1016/S0022-0728(79)80075-3

27. Jalil O, Pandey CM, Kumar D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry. 2021; 138: 107733. doi: 10.1016/j.bioelechem.2020.107733

28. Li J, Liu S, Yu J, et al. Electrochemical immunosensor based on graphene-polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors and Actuators B: Chemical. 2013; 188: 99-105. doi: 10.1016/j.snb.2013.06.082

29. Verma S, Pandey CM, Kumar D. A highly efficient rGO grafted MoS2 nanocomposite for dye adsorption and electrochemical detection of hydroquinone in wastewater. New Journal of Chemistry. 2022; 46(44): 21190-21200. doi: 10.1039/d2nj04285a

30. Li J, Jiang J, Zhao D, et al. Facile synthesis of Pd/N-doped reduced graphene oxide via a moderate wet-chemical route for non-enzymatic electrochemical detection of estradiol. Journal of Alloys and Compounds. 2018; 769: 566-575. doi: 10.1016/j.jallcom.2018.08.016

31. Supchocksoonthorn P, Alvior Sinoy MC, de Luna MDG, et al. Facile fabrication of 17β-estradiol electrochemical sensor using polyaniline/carbon dot-coated glassy carbon electrode with synergistically enhanced electrochemical stability. Talanta. 2021; 235: 122782. doi: 10.1016/j.talanta.2021.122782




DOI: https://doi.org/10.24294/can.v7i2.4768

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Aditya Dam, Tanu Rajput, Sakshi Verma, Devendra Kumar

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.