Non-enzymatic detection of 17β-estradiol in real samples using PANI@CeO2 nanocomposite
Vol 7, Issue 2, 2024
VIEWS - 779 (Abstract)
Abstract
Keywords
Full Text:
PDFReferences
1. Wang Y, Zhao X, Zhang M, et al. A fluorescent amplification strategy for high-sensitive detection of 17 β-estradiol based on EXPAR and HCR. Analytica Chimica Acta. 2020; 1116: 1-8. doi: 10.1016/j.aca.2020.04.010
2. Pu H, Huang Z, Sun DW, et al. Recent advances in the detection of 17β-estradiol in food matrices: A review. Critical Reviews in Food Science and Nutrition. 2019; 59(13): 2144-2157. doi: 10.1080/10408398.2019.1611539
3. Orozco-Hernández L, Gómez-Oliván LM, Elizalde-Velázquez A, et al. 17-β-Estradiol: Significant reduction of its toxicity in water treated by photocatalysis. Science of The Total Environment. 2019; 669: 955-963. doi: 10.1016/j.scitotenv.2019.03.190
4. Minopoli A, Sakač N, Lenyk B, et al. LSPR-based colorimetric immunosensor for rapid and sensitive 17β-estradiol detection in tap water. Sensors and Actuators B: Chemical. 2020; 308: 127699. doi: 10.1016/j.snb.2020.127699
5. Yao X, Wang Z, Dou L, et al. An innovative immunochromatography assay for highly sensitive detection of 17β-estradiol based on an indirect probe strategy. Sensors and Actuators B: Chemical. 2019; 289: 48-55. doi: 10.1016/j.snb.2019.03.078
6. Triviño JJ, Gómez M, Valenzuela J, et al. Determination of a natural (17β-estradiol) and a synthetic (17α-ethinylestradiol) hormones in pharmaceutical formulations and urine by adsorptive stripping voltammetry. Sensors and Actuators B: Chemical. 2019; 297: 126728. doi: 10.1016/j.snb.2019.126728
7. Goswami B, Mahanta D. Fe3O4-Polyaniline Nanocomposite for Non-enzymatic Electrochemical Detection of 2,4-Dichlorophenoxyacetic Acid. ACS Omega. 2021; 6(27): 17239-17246. doi: 10.1021/acsomega.1c00983
8. Paneru S, Kumar D. A Novel Electrochemical Biosensor Based on Polyaniline-Embedded Copper Oxide Nanoparticles for High-Sensitive Paraoxon-Ethyl (PE) Detection. Applied Biochemistry and Biotechnology. 2023; 195(7): 4485-4502. doi: 10.1007/s12010-023-04350-y
9. Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers. 2020; 13(1): 49. doi: 10.3390/polym13010049
10. Petruleviciene M, Juodkazyte J, Savickaja I, et al. BiVO4-based coatings for non-enzymatic photoelectrochemical glucose determination. Journal of Electroanalytical Chemistry. 2022; 918: 116446. doi: 10.1016/j.jelechem.2022.116446
11. Emir G, Dilgin Y, Ramanaviciene A, et al. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchemical Journal. 2021; 161: 105751. doi: 10.1016/j.microc.2020.105751
12. Adeosun WA, Asiri AM, Marwani HM, et al. Enzymeless Electrocatalytic Detection of Uric Acid Using Polydopamine/Polypyrrole Copolymeric film. ChemistrySelect. 2020; 5(1): 156-164. doi: 10.1002/slct.201903628
13. Ashwini IS, Pattar J, Anjaneyulu P, et al. Synthesis and electrical properties of polyaniline–cerium oxide composites. Synthetic Metals. 2020; 270: 116588. doi: 10.1016/j.synthmet.2020.116588
14. Rossignatti BC, Vieira AP, Barbosa MS, et al. Thin Films of Polyaniline-Based Nanocomposites with CeO2 and WO3 Metal Oxides Applied to the Impedimetric and Capacitive Transducer Stages in Chemical Sensors. Polymers. 2023; 15(3): 578. doi: 10.3390/polym15030578
15. Sharma SS, Palatty S. Advances in functionalized polyaniline nanocomposites for electrochemical sensing and energy storage applications. Applications of Multifunctional Nanomaterials. 2023; 2023: 177-196. doi: 10.1016/b978-0-12-820557-0.00004-7
16. Beygisangchin M, Abdul Rashid S, Shafie S, et al. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers. 2021; 13(12): 2003. doi: 10.3390/polym13122003
17. Hussein MA, Khan A, Alamry KA. A highly efficient electrochemical sensor containing polyaniline/cerium oxide nanocomposites for hydrogen peroxide detection. RSC Advances. 2022; 12(49): 31506-31517. doi: 10.1039/d2ra05041b
18. Lei Y, Qiu Z, Tan N, et al. Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution. Progress in Organic Coatings. 2020; 139: 105430. doi: 10.1016/j.porgcoat.2019.105430
19. Parvatikar N, Jain S, Bhoraskar SV, et al. Spectroscopic and electrical properties of polyaniline/CeO2 composites and their application as humidity sensor. Journal of Applied Polymer Science. 2006; 102(6): 5533-5537. doi: 10.1002/app.24636
20. Li C, Wang J, Wen Y, et al. Polyaniline/CeO2 Nanofiber Composite Membrane as a Promoter of Pt for Formic Acid Electro-Oxidation. ECS Electrochemistry Letters. 2012; 2(1): H1-H4. doi: 10.1149/2.001302eel
21. Saranya J, Sreeja BS, Padmalaya G, et al. Ultrasonic Assisted Cerium Oxide/Graphene Oxide Hybrid: Preparation, Anti-proliferative, Apoptotic Induction and G2/M Cell Cycle Arrest in HeLa Cell Lines. Journal of Inorganic and Organometallic Polymers and Materials. 2020; 30(7): 2666-2676. doi: 10.1007/s10904-019-01403-w
22. Huang H, Guo ZC. Preparation and Characterization of Conductive Polyaniline/Cerium Dioxide Composites. Materials Science Forum. 2010; 663-665: 686-689. doi: 10.4028/www.scientific.net/msf.663-665.686
23. Wang S, Huang Z, Wang J, et al. Thermal stability of several polyaniline/rare earth oxide composites (I): polyaniline/CeO2 composites. Journal of Thermal Analysis and Calorimetry. 2011; 107(3): 1199-1203. doi: 10.1007/s10973-011-1777-1
24. Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corrosion Science. 2018; 137: 111-126. doi: 10.1016/j.corsci.2018.03.038
25. Elgrishi N, Rountree KJ, McCarthy BD, et al. A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education. 2018; 95(2): 197-206. doi: 10.1021/acs.jchemed.7b00361
26. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1979; 101: 19-28. doi: 10.1016/S0022-0728(79)80075-3
27. Jalil O, Pandey CM, Kumar D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry. 2021; 138: 107733. doi: 10.1016/j.bioelechem.2020.107733
28. Li J, Liu S, Yu J, et al. Electrochemical immunosensor based on graphene-polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors and Actuators B: Chemical. 2013; 188: 99-105. doi: 10.1016/j.snb.2013.06.082
29. Verma S, Pandey CM, Kumar D. A highly efficient rGO grafted MoS2 nanocomposite for dye adsorption and electrochemical detection of hydroquinone in wastewater. New Journal of Chemistry. 2022; 46(44): 21190-21200. doi: 10.1039/d2nj04285a
30. Li J, Jiang J, Zhao D, et al. Facile synthesis of Pd/N-doped reduced graphene oxide via a moderate wet-chemical route for non-enzymatic electrochemical detection of estradiol. Journal of Alloys and Compounds. 2018; 769: 566-575. doi: 10.1016/j.jallcom.2018.08.016
31. Supchocksoonthorn P, Alvior Sinoy MC, de Luna MDG, et al. Facile fabrication of 17β-estradiol electrochemical sensor using polyaniline/carbon dot-coated glassy carbon electrode with synergistically enhanced electrochemical stability. Talanta. 2021; 235: 122782. doi: 10.1016/j.talanta.2021.122782
DOI: https://doi.org/10.24294/can.v7i2.4768
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Aditya Dam, Tanu Rajput, Sakshi Verma, Devendra Kumar
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.