Carbon nanomaterial-based electrochemical sensor in biomedical application, a comprehensive study

Srabani Majumdar, Razu Shahazi, Amirul Islam Saddam, Mohammed Muzibur Rahman, Md. Mahmud Alam, Ajoy Kumer, Giti Paimard

Article ID: 4654
Vol 7, Issue 1, 2024

VIEWS - 354 (Abstract) 46 (PDF)

Abstract


Recently, carbon nanocomposites have garnered a lot of curiosity because of their distinctive characteristics and extensive variety of possible possibilities. Among all of these applications, the development of sensors with electrochemical properties based on carbon nanocomposites for use in biomedicine has shown as an area with potential. These sensors are suitable for an assortment of biomedical applications, such as prescribing medications, disease diagnostics, and biomarker detection. They have many benefits, including outstanding sensitivity, selectivity, and low limitations on detection. This comprehensive review aims to provide an in-depth analysis of the recent advancements in carbon nanocomposites-based electrochemical sensors for biomedical applications. The different types of carbon nanomaterials used in sensor fabrication, their synthesis methods, and the functionalization techniques employed to enhance their sensing properties have been discussed. Furthermore, we enumerate the numerous biological and biomedical uses of electrochemical sensors based on carbon nanocomposites, among them their employment in illness diagnosis, physiological parameter monitoring, and biomolecule detection. The challenges and prospects of these sensors in biomedical applications are also discussed. Overall, this review highlights the tremendous potential of carbon nanomaterial-based electrochemical sensors in revolutionizing biomedical research and clinical diagnostics.


Keywords


carbon nanocomposites; sensitivity; selectivity; low detection limits; detecting biomolecules; monitoring physiological parameters; diagnosing diseases; electrochemical sensors

Full Text:

PDF


References


1. Lu H, He B, Gao B. Emerging electrochemical sensors for life healthcare. Engineered Regeneration. 2021; 2: 175-181. doi: 10.1016/j.engreg.2021.12.002

2. Sinha K, Uddin Z, Kawsar HI, et al. Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks. TrAC Trends in Analytical Chemistry. 2023; 158: 116861. doi: 10.1016/j.trac.2022.116861

3. Taniselass S, Arshad MKM, Gopinath SCB. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosensors and Bioelectronics. 2019; 130: 276-292. doi: 10.1016/j.bios.2019.01.047

4. Haque S, Yasir M, Ciocan S, et al. Enzymatic Fuel Cells and Biosensors. In: Ghangrekar MM, Duteanu NM, Surampalli RY, Zhang TC (editors). Microbial Electrochemical Technologies. Wiley‐VCH GmbH; 2023. pp. 467-494. doi: 10.1002/9783527839001.ch19

5. Haque S, Nasar A, Duteanu N, et al. Carbon based-nanomaterials used in biofuel cells – A review. Fuel. 2023; 331: 125634. doi: 10.1016/j.fuel.2022.125634

6. Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. The Analyst. 2019; 144(22): 6461-6478. doi: 10.1039/c9an01747j

7. Min J, Sempionatto JR, Teymourian H, et al. Wearable electrochemical biosensors in North America. Biosensors and Bioelectronics. 2021; 172: 112750. doi: 10.1016/j.bios.2020.112750

8. Campuzano S, Barderas R, Moreno-Casbas MT, et al. Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level. Analytical and Bioanalytical Chemistry. 2023; 416(9): 2151-2172. doi: 10.1007/s00216-023-04805-5

9. Umapathi R, Ghoreishian SM, Rani GM, et al. Review—Emerging Trends in the Development of Electrochemical Devices for the On-Site Detection of Food Contaminants. ECS Sensors Plus. 2022; 1(4): 044601. doi: 10.1149/2754-2726/ac9d4a

10. Zhang W, Wang R, Luo F, et al. Miniaturized electrochemical sensors and their point-of-care applications. Chinese Chemical Letters. 2020; 31(3): 589-600. doi: 10.1016/j.cclet.2019.09.022

11. Pakchin PS, Nakhjavani SA, Saber R, et al. Recent advances in simultaneous electrochemical multi-analyte sensing platforms. TrAC Trends in Analytical Chemistry. 2017; 92: 32-41. doi: 10.1016/j.trac.2017.04.010

12. Zhu C, Yang G, Li H, et al. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Analytical Chemistry. 2014; 87(1): 230-249. doi: 10.1021/ac5039863

13. Teymourian H, Parrilla M, Sempionatto JR, et al. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sensors. 2020; 5(9): 2679-2700. doi: 10.1021/acssensors.0c01318

14. Lu T, Ji S, Jin W, et al. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors. 2023; 23(6): 2991. doi: 10.3390/s23062991

15. Rossi LM, Quach AD, Rosenzweig Z. Glucose oxidase? magnetite nanoparticle bioconjugate for glucose sensing. Analytical and Bioanalytical Chemistry. 2004; 380(4): 606-613. doi: 10.1007/s00216-004-2770-3

16. Madden J, Vaughan E, Thompson M, et al. Electrochemical sensor for enzymatic lactate detection based on laser-scribed graphitic carbon modified with platinum, chitosan and lactate oxidase. Talanta. 2022; 246: 123492. doi: 10.1016/j.talanta.2022.123492

17. Singh AP, Balayan S, Hooda V, et al. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. International Journal of Biological Macromolecules. 2020; 164: 3943-3952. doi: 10.1016/j.ijbiomac.2020.08.215

18. Teeparuksapun K, Hedström M, Mattiasson B. A Sensitive Capacitive Biosensor for Protein a Detection Using Human IgG Immobilized on an Electrode Using Layer-by-Layer Applied Gold Nanoparticles. Sensors. 2021; 22(1): 99. doi: 10.3390/s22010099

19. Razzino CA, Serafín V, Gamella M, et al. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosensors and Bioelectronics. 2020; 163: 112238. doi: 10.1016/j.bios.2020.112238

20. Wu Y, Arroyo-Currás N. Advances in nucleic acid architectures for electrochemical sensing. Current Opinion in Electrochemistry. 2021; 27: 100695. doi: 10.1016/j.coelec.2021.100695

21. Wang DX, Wang J, Wang YX, et al. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chemical Science. 2021; 12(22): 7602-7622. doi: 10.1039/d1sc00587a

22. Gao X, Dong S, Fu L, et al. Use of Triangular Silver Nanoplates as Low Potential Redox Mediators for Electrochemical Sensing. Analytical Chemistry. 2021; 93(6): 3295-3300. doi: 10.1021/acs.analchem.0c05342

23. Mayall RM, Marenco AJ, Kilgore M, et al. Ultrasensitive Detection of Surface‐Confined Redox Molecules by Mediation‐Based Amplification. ChemElectroChem. 2021; 8(10): 1873-1880. doi: 10.1002/celc.202100369

24. Nishitani S, Sakata T. Enhancement of Signal-to-Noise Ratio for Serotonin Detection with Well-Designed Nanofilter-Coated Potentiometric Electrochemical Biosensor. ACS Applied Materials & Interfaces. 2020; 12(13): 14761-14769. doi: 10.1021/acsami.9b19309

25. Hassan MH, Vyas C, Grieve B, et al. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors. 2021; 21(14): 4672. doi: 10.3390/s21144672

26. Manjakkal L, Szwagierczak D, Dahiya R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Progress in Materials Science. 2020; 109: 100635. doi: 10.1016/j.pmatsci.2019.100635

27. Beaver K, Dantanarayana A, Minteer SD. Materials Approaches for Improving Electrochemical Sensor Performance. The Journal of Physical Chemistry B. 2021; 125(43): 11820-11834. doi: 10.1021/acs.jpcb.1c07063

28. Porto LS, Silva DN, de Oliveira AEF, et al. Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Reviews in Analytical Chemistry. 2020; 38(3). doi: 10.1515/revac-2019-0017

29. Asadian E, Ghalkhani M, Shahrokhian S. Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical. 2019; 293: 183-209. doi: 10.1016/j.snb.2019.04.075

30. Cho IH, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomaterials Research. 2020; 24(1). doi: 10.1186/s40824-019-0181-y

31. Yan Y, Miao J, Yang Z, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews. 2015; 44(10): 3295-3346. doi: 10.1039/c4cs00492b

32. Zhou C, Zou H, Sun C, et al. Recent advances in biosensors for antibiotic detection: Selectivity and signal amplification with nanomaterials. Food Chemistry. 2021; 361: 130109. doi: 10.1016/j.foodchem.2021.130109

33. Cho IH, Lee J, Kim J, et al. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors. 2018; 18(2): 207. doi: 10.3390/s18010207

34. Zamora-Gálvez A, Morales-Narváez E, Mayorga-Martinez CC, et al. Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Applied Materials Today. 2017; 9: 387-401. doi: 10.1016/j.apmt.2017.09.006

35. Mahmoudpour M, Ezzati Nazhad Dolatabadi J, Torbati M, et al. Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors and Bioelectronics. 2019; 143: 111603. doi: 10.1016/j.bios.2019.111603

36. Pasinszki T, Krebsz M, Tung TT, et al. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors. 2017; 17(8): 1919. doi: 10.3390/s17081919

37. Fahmy HM, Abu Serea ES, Salah-Eldin RE, et al. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomaterials Science & Engineering. 2022; 8(3): 964-1000. doi: 10.1021/acsbiomaterials.1c00710

38. Pineda S, Han Z, Ostrikov K. Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases. Materials. 2014; 7(7): 4896-4929. doi: 10.3390/ma7074896

39. Gan T, Hu, S. Electrochemical sensors based on graphene materials. Microchimica Acta. 2011; 175: 1–19. doi: 10.1007/s00604-011-0639-7S

40. Li SJ, Xing Y, Wang GF. A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone. Microchimica Acta. 2011; 176(1-2): 163-168. doi: 10.1007/s00604-011-0709-x

41. Terse-Thakoor T, Badhulika S, Mulchandani A. Graphene based biosensors for healthcare. Journal of Materials Research. 2017; 32(15): 2905-2929. doi: 10.1557/jmr.2017.175

42. Coroş M, Pruneanu S, Stefan-van Staden RI. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. Journal of The Electrochemical Society. 2019; 167(3): 037528. doi: 10.1149/2.0282003jes

43. Ahmad H, Fan M, Hui D. Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering. 2018; 145: 270-280. doi: 10.1016/j.compositesb.2018.02.006

44. Hayyan M, Abo-Hamad A, AlSaadi MA, et al. Functionalization of graphene using deep eutectic solvents. Nanoscale Research Letters. 2015; 10(1). doi: 10.1186/s11671-015-1004-2

45. Li J, Kuang D, Feng Y, et al. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. Journal of Hazardous Materials. 2012; 201-202: 250-259. doi: 10.1016/j.jhazmat.2011.11.076

46. Qian L, Thiruppathi AR, Elmahdy R, et al. Graphene-Oxide-Based Electrochemical Sensors for the Sensitive Detection of Pharmaceutical Drug Naproxen. Sensors. 2020; 20(5): 1252. doi: 10.3390/s20051252

47. Zhang L, Yin M, Wei X, et al. Recent advances in morphology, aperture control, functional control and electrochemical sensors applications of carbon nanofibers. Analytical Biochemistry. 2022; 656: 114882. doi: 10.1016/j.ab.2022.114882

48. Jahromi Z, Mirzaei E, Savardashtaki A, et al. A rapid and selective electrochemical sensor based on electrospun carbon nanofibers for tramadol detection. Microchemical Journal. 2020; 157: 104942. doi: 10.1016/j.microc.2020.104942

49. Kurbanoglu S, Cevher SC, Toppare L, et al. Electrochemical biosensor based on three components random conjugated polymer with fullerene (C60). Bioelectrochemistry. 2022; 147: 108219. doi: 10.1016/j.bioelechem.2022.108219

50. Paukov M, Kramberger C, Begichev I, et al. Functionalized Fullerenes and Their Applications in Electrochemistry, Solar Cells, and Nanoelectronics. Materials. 2023; 16(3): 1276. doi: 10.3390/ma16031276

51. Gakhar T, Rosenwaks Y, Hazra A. Fullerene (C60) functionalized TiO2 nanotubes for conductometric sensing of formaldehyde. Sensors and Actuators B: Chemical. 2022; 364: 131892. doi: 10.1016/j.snb.2022.131892

52. Bai J, Sun C, Jiang X. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells. Analytical and Bioanalytical Chemistry. 2016; 408(17): 4705-4714. doi: 10.1007/s00216-016-9554-4

53. Lin X, Xiong M, Zhang J, et al. Carbon dots based on natural resources: Synthesis and applications in sensors. Microchemical Journal. 2021; 160: 105604. doi: 10.1016/j.microc.2020.105604

54. Xu D, Lin Q, Chang H. Recent Advances and Sensing Applications of Carbon Dots. Small Methods. 2019; 4(4). doi: 10.1002/smtd.201900387

55. Carli S, Lambertini L, Zucchini E, et al. Single walled carbon nanohorns composite for neural sensing and stimulation. Sensors and Actuators B: Chemical. 2018; 271: 280-288. doi: 10.1016/j.snb.2018.05.083

56. Zhang R, Fu K, Zou F, et al. Highly sensitive electrochemical sensor based on Pt nanoparticles/carbon nanohorns for simultaneous determination of morphine and MDMA in biological samples. Electrochimica Acta. 2021; 370: 137803. doi: 10.1016/j.electacta.2021.137803

57. Qureshi A, Kang WP, Davidson JL, et al. Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diamond and Related Materials. 2009; 18(12): 1401-1420. doi: 10.1016/j.diamond.2009.09.008

58. Yang Y, Yang X, Yang Y, et al. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon. 2018; 129: 380-395. doi: 10.1016/j.carbon.2017.12.013

59. Lv MM, Fan SF, Wang QL, et al. An enzyme-free electrochemical sandwich DNA assay based on the use of hybridization chain reaction and gold nanoparticles: application to the determination of the DNA of Helicobacter pylori. Microchimica Acta. 2019; 187(1). doi: 10.1007/s00604-019-3999-z

60. Santhanam M, Algov I, Alfonta L. DNA/RNA Electrochemical Biosensing Devices a Future Replacement of PCR Methods for a Fast Epidemic Containment. Sensors. 2020; 20(16): 4648. doi: 10.3390/s20164648

61. Zhang L, Su W, Liu S, et al. Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection. Phenomics. 2022; 2(1): 18-32. doi: 10.1007/s43657-021-00032-z

62. Mazouz Z, Mokni M, Fourati N, et al. Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosensors and Bioelectronics. 2020; 151: 111978. doi: 10.1016/j.bios.2019.111978

63. Vanova V, Mitrevska K, Milosavljevic V, et al. Peptide-based electrochemical biosensors utilized for protein detection. Biosensors and Bioelectronics. 2021; 180: 113087. doi: 10.1016/j.bios.2021.113087

64. Yakoh A, Pimpitak U, Rengpipat S, et al. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensors and Bioelectronics. 2021; 176: 112912. doi: 10.1016/j.bios.2020.112912

65. Ranallo S, Bracaglia S, Sorrentino D, et al. Synthetic Antigen-Conjugated DNA Systems for Antibody Detection and Characterization. ACS Sensors. 2023; 8(7): 2415-2426. doi: 10.1021/acssensors.3c00564

66. Coronado-Apodaca KG, González-Meza GM, Aguayo-Acosta A, et al. Immobilized Enzyme-based Novel Biosensing System for Recognition of Toxic Elements in the Aqueous Environment. Topics in Catalysis. 2023; 66(9-12): 606-624. doi: 10.1007/s11244-023-01786-8

67. Bucur B, Purcarea C, Andreescu S, et al. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors. 2021; 21(9): 3038. doi: 10.3390/s21093038

68. Cavalcante FTT, de A. Falcão IR, da S. Souza JE, et al. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem. 2021; 2(1): 149-184. doi: 10.3390/electrochem2010012

69. Ziółkowski R, Jarczewska M, Górski Ł, et al. From Small Molecules toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. Sensors. 2021; 21(3): 724. doi: 10.3390/s21030724

70. Onaş AM, Dascălu C, Raicopol MD, et al. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. Biosensors. 2022; 12(10): 816. doi: 10.3390/bios12100816

71. Mahmoudpour M, Karimzadeh Z, Ebrahimi G, et al. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Critical Reviews in Analytical Chemistry. 2021; 52(8): 1818-1845. doi: 10.1080/10408347.2021.1919987

72. Wang Z, Li P, Cui L, et al. Integration of nanomaterials with nucleic acid amplification approaches for biosensing. TrAC Trends in Analytical Chemistry. 2020; 129: 115959. doi: 10.1016/j.trac.2020.115959

73. Chen Y, Qian C, Liu C, et al. Nucleic acid amplification free biosensors for pathogen detection. Biosensors and Bioelectronics. 2020; 153: 112049. doi: 10.1016/j.bios.2020.112049

74. Wang Z yue, Li P, Cui L, et al. Integration of nanomaterials with nucleic acid amplification approaches for biosensing. TrAC Trends in Analytical Chemistry. 2020; 129: 115959. doi: 10.1016/j.trac.2020.115959

75. Bertok T, Bertokova A, Hroncekova S, et al. Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. Chemosensors. 2021; 9(8): 205. doi: 10.3390/chemosensors9080205

76. Zhang W, Xiao G, Chen J, et al. Electrochemical biosensors for measurement of colorectal cancer biomarkers. Analytical and Bioanalytical Chemistry. 2021; 413(9): 2407-2428. doi: 10.1007/s00216-021-03197-8

77. Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clinica Chimica Acta. 2021; 516: 111-135. doi: 10.1016/j.cca.2021.01.018

78. Menon S, Mathew MR, Sam S, et al. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. Journal of Electroanalytical Chemistry. 2020; 878: 114596. doi: 10.1016/j.jelechem.2020.114596

79. Brazaca LC, dos Santos PL, de Oliveira PR, et al. Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review. Analytica Chimica Acta. 2021; 1159: 338384. doi: 10.1016/j.aca.2021.338384

80. Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics. 2020; 159: 112214. doi: 10.1016/j.bios.2020.112214

81. Karyakin AA. Glucose biosensors for clinical and personal use. Electrochemistry Communications. 2021; 125: 106973. doi: 10.1016/j.elecom.2021.106973

82. Lipińska W, Grochowska K, Siuzdak K. Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. Nanomaterials. 2021; 11(5): 1156. doi: 10.3390/nano11051156

83. Shinde R, Juwarwala I, Modi V, et al. Chandarana C. Utility of cardiac biomarkers and biosensors for diagnosis of acute myocardial infarction. Global Translational Medicine. 2023; 2(2): 0403. doi: 10.36922/gtm.0403

84. Zhong S, Chen L, Shi X, et al. Recent advances in electrochemical aptasensors for detecting cardiac biomarkers: A review. Microchemical Journal. 2023; 193: 109063. doi: 10.1016/j.microc.2023.109063

85. Kazemi Asl S, Rahimzadegan M. Recent Advances in the Fabrication of Nano-aptasensors for the Detection of Troponin as a Main Biomarker of Acute Myocardial Infarction. Critical Reviews in Analytical Chemistry. 2021; 53(3): 594-613. doi: 10.1080/10408347.2021.1967721

86. Aljabali AA, Obeid MA, Amawi HA, et al. Application of Nanomaterials in the Diagnosis and Treatment of Genetic Disorders. In: Applications of Nanomaterials in Human Health. Springer; 2020.

87. Jiang H, Xi H, Juhas M, et al. Biosensors for Point Mutation Detection. Frontiers in Bioengineering and Biotechnology. 2021; 9. doi: 10.3389/fbioe.2021.797831

88. Song Z, Zhou Y, Han X, et al. Recent advances in enzymeless-based electrochemical sensors to diagnose neurodegenerative diseases. Journal of Materials Chemistry B. 2021; 9(5): 1175-1188. doi: 10.1039/d0tb02745f

89. Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. Journal of Pharmaceutical and Biomedical Analysis. 2022; 209: 114479. doi: 10.1016/j.jpba.2021.114479

90. Brazaca LC, Sampaio I, Zucolotto V, et al. Applications of biosensors in Alzheimer’s disease diagnosis. Talanta. 2020; 210: 120644. doi: 10.1016/j.talanta.2019.120644

91. Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. Materials. 2021; 14(5): 1059. doi: 10.3390/ma14051059

92. Castro KPR, Colombo RNP, Iost RM, et al. Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Analytical and Bioanalytical Chemistry. 2023; 415(18): 3879-3895. doi: 10.1007/s00216-023-04578-x

93. Hassanpour S, Behnam B, Baradaran B, et al. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta. 2021; 221: 121610. doi: 10.1016/j.talanta.2020.121610

94. Qian L, Durairaj S, Prins S, et al. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics. 2021; 175: 112836. doi: 10.1016/j.bios.2020.112836

95. Fu E, Khederlou K, Lefevre N, et al. Progress on Electrochemical Sensing of Pharmaceutical Drugs in Complex Biofluids. Chemosensors. 2023; 11(8): 467. doi: 10.3390/chemosensors11080467

96. Manikkath J, Subramony JA. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Advanced Drug Delivery Reviews. 2021; 179: 113997. doi: 10.1016/j.addr.2021.113997

97. Bhave G, Chen JC, Singer A, et al. Distributed sensor and actuator networks for closed-loop bioelectronic medicine. Materials Today. 2021; 46: 125-135. doi: 10.1016/j.mattod.2020.12.020

98. Cicha I, Priefer R, Severino P, et al. Biosensor-Integrated Drug Delivery Systems as New Materials for Biomedical Applications. Biomolecules. 2022; 12(9): 1198. doi: 10.3390/biom12091198




DOI: https://doi.org/10.24294/can.v7i1.4654

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Srabani Majumdar, Razu Shahazi, Amirul Islam Saddam, Mohammed Muzibur Rahman, Md. Mahmud Alam, Ajoy Kumer, Giti Paimard

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.