Emerging applications of stimuli-responsive polymers in pharmaceutical and biomedical field

Rabinarayan Parhi

Article ID: 4479
Vol 6, Issue 2, 2023

VIEWS - 1076 (Abstract)

Abstract


Stimuli-responsive, smart, or intelligent polymers are materials that significantly change their physical or chemical properties when there is a small change in the surrounding environment due to either internal or external stimuli. In the last two decades or so, there has been tremendous growth in the strategies to develop various types of stimuli-responsive polymer (SRP) materials/systems that are suitable for various fields, including biomedical, material science, nanotechnology, biotechnology, surface and colloid sciences, biochemistry, and the environmental field. The wide acceptability of SRPs is due to their availability in different architectural forms such as scaffolds, aggregates, hydrogels, pickering emulsions, core-shell particles, nanogels, micelles, membranes, capsules, and layer-by-layer films. The present review focuses on different types of SRPs, such as physical, chemical, and biological, and various important applications, including controlled drug delivery (CDD), stabilization of colloidal dispersion, diagnostics (sensors and imaging), tissue engineering, regenerative medicines, and actuators. The applications of SRPs have immense potential in various fields, and the author hopes these polymers will add a new field of applications through new concepts.


Keywords


stimuli-responsive polymer; scaffold; nanogel; actuator; artificial muscle; gripper

Full Text:

PDF


References


Parhi R. Drug delivery applications of chitin and chitosan: A review. Environmental Chemistry Letters 2020; 18(3): 577–594. doi: 10.1007/s10311-020-00963-5 Chen JK, Chang CJ. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials 2014; 7(2): 805–875. doi: 10.3390/ma7020805 Cabane E, Zhang X, Langowska K, et al. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012; 7(1). doi: 10.1007/s13758-011-0009-3 Chen Z, Huo J, Hao L, et al. Multiscale modeling and simulations of responsive polymers. Current Opinion in Chemical Engineering 2019; 23: 21–33. doi: 10.1016/j.coche.2019.02.004 Lee W, Kim D, Lee S, et al. Stimuli-responsive switchable organic-inorganic nanocomposite materials. Nano Today 2018; 23: 97–123. doi: 10.1016/j.nantod.2018.10.006 Alejo T, Uson L, Arruebo M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. Journal of Controlled Release 2019; 314: 162–176. doi: 10.1016/j.jconrel.2019.10.036 Fleischmann E, Zentel R. Liquid‐crystalline ordering as a concept in materials science: From semiconductors to stimuli‐responsive devices. Angewandte Chemie International Edition 2013; 52(34): 8810–8827. doi: 10.1002/anie.201300371 Koçak G, Tuncer C, Bütün V. Stimuli-responsive polymers providing new opportunities for various applications. Hacettepe Journal of Biology and Chemistry 2020; 48(5): 527–574. doi: 10.15671/hjbc.811267 Qureshi D, Nayak SK, Maji S, et al. Environment sensitive hydrogels for drug delivery applications. European Polymer Journal 2019; 120: 109220. doi: 10.1016/j.eurpolymj.2019.109220 Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science 2010; 35(1–2): 278–301. doi: 10.1016/j.progpolymsci.2009.10.008 Nawaz M, Sliman Y, Ercan I, et al. Magnetic and pH-responsive magnetic nanocarriers. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Woodhead Publishing; 2019. pp. 37–85. doi: 10.1016/b978-0-08-101995-5.00002-7 Koçak G, Tuncer C, Bütün V. pH-responsive polymers. Polymer Chemistry 2017; 8(1): 144–176. doi: 10.1039/c6py01872f Liu H, Lin S, Feng Y, et al. CO2-responsive polymer materials. Polymer Chemistry 2017; 8(1): 12–23. doi: 10.1039/c6py01101b Xiang T, Lu T, Zhao WF, et al. Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. New Journal of Chemistry 2018; 42(7): 5323–5333. doi: 10.1039/c8nj00039e Corpart JM, Candau F. Aqueous solution properties of ampholytic copolymers prepared in microemulsions. Macromolecules 1993; 26(6): 1333–1343. doi: 10.1021/ma00058a023 Casado N, Hernández G, Sardon H, et al. Current trends in redox polymers for energy and medicine. Progress in Polymer Science 2016; 52: 107–135. doi: 10.1016/j.progpolymsci.2015.08.003 Wang J, Zhang H, Wang F, et al. Enzyme-responsive polymers for drug delivery and molecular imaging. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Woodhead Publishing. Elsevier Inc.; 2018. doi: 10.1016/b978-0-08-101997-9.00004-7 Sharifzadeh G, Hosseinkhani H. Biomolecule‐responsive hydrogels in medicine. Advanced Healthcare Materials 2017; 6(24). doi: 10.1002/adhm.201700801 Wang C, Wang J, Zhang X, et al. In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Science Translational Medicine 2018; 10(429). doi: 10.1126/scitranslmed.aan3682 Sanhai WR, Sakamoto JH, Canady R, et al. Seven challenges for nanomedicine. Nature Nanotechnology 2008; 3(5): 242–244. doi: 10.1038/nnano.2008.114 Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomaterials Research 2018; 22(1). doi: 10.1186/s40824-018-0138-6 Ahmadi A, Hosseini-Nami S, Abed Z, et al. Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discovery Today 2020; 25(12): 2182–2200. doi: 10.1016/j.drudis.2020.09.026 Massoumi B, Abbasian M, Jahanban‐Esfahlan R, et al. PEGylated hollow pH‐responsive polymeric nanocapsules for controlled drug delivery. Polymer International 2020; 69(5): 519–527. doi: 10.1002/pi.5987 Guo S, Gao Y, Wei M, et al. Controlled release kinetics from a surface modified microgel-based reservoir device. Journal of Materials Chemistry B 2015; 3(12): 2516–2521. doi: 10.1039/c4tb01964d Gao Y, Wong KY, Ahiabu A, et al. Sequential and controlled release of small molecules from poly(N-isopropylacrylamide) microgel-based reservoir devices. Journal of Materials Chemistry B 2016; 4(30): 5144–5150. doi: 10.1039/c6tb00864j Lee ES, Kim D, Youn YS, et al. A virus‐mimetic nanogel vehicle. Angewandte Chemie International Edition 2008; 47(13): 2418–2421. doi: 10.1002/anie.200704121 Zhu X, Sun Y, Chen D, et al. Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function. Journal of Controlled Release 2017; 254: 107–118. doi: 10.1016/j.jconrel.2017.03.038 Dimde M, Neumann F, Reisbeck F, et al. Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing. Biomaterials Science 2017; 5(11): 2328–2336. doi: 10.1039/c7bm00729a Parhi R, Suresh P, Patnaik S. Physical means of stratum corneum barrier manipulation to enhance transdermal drug delivery. Current Drug Delivery 2015; 12(2): 122–138. doi: 10.2174/1567201811666140515145329 Hardy JG, Larrañeta E, Donnelly RF, et al. Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Molecular Pharmaceutics 2016; 13(3): 907–914. doi: 10.1021/acs.molpharmaceut.5b00807 Chen S, Matsumoto H, Moro‐oka Y, et al. Microneedle‐array patch fabricated with enzyme‐free polymeric components capable of on‐demand insulin delivery. Advanced Functional Materials 2018; 29(7). doi: 10.1002/adfm.201807369 Yu J, Zhang Y, Ye Y, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences 2015; 112(27): 8260–8265. doi: 10.1073/pnas.1505405112 Mir M, Permana AD, Ahmed N, et al. Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds using infection responsive nanoparticles loaded into dissolving microneedles: A proof of concept study. European Journal of Pharmaceutics and Biopharmaceutics 2020; 147: 57–68. doi: 10.1016/j.ejpb.2019.12.008 Qin S, Geng Y, Discher DE, et al. Temperature‐controlled assembly and release from polymer vesicles of poly(ethylene oxide)‐block‐ poly(N‐isopropylacrylamide). Advanced Materials 2006; 18(21): 2905–2909. doi: 10.1002/adma.200601019 Collins J, Bhaskaran A, Connal LA. Polymerosomes for drug delivery. Material Matters 2017; 12(1). Wang X, Hu J, Liu G, et al. Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions. Journal of the American Chemical Society 2015; 137(48): 15262–15275. doi: 10.1021/jacs.5b10127 Chi X, Ji X, Xia D, et al. A dual-responsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillar[7]arene and an azobenzene-containing random copolymer. Journal of the American Chemical Society 2015; 137(4): 1440–1443. doi: 10.1021/ja512978n Wang Y, Luo Q, Zhu W, et al. Reduction/pH dual-responsive nano-prodrug micelles for controlled drug delivery. Polymer Chemistry 2016; 7(15): 2665–2673. doi: 10.1039/c6py00168h Ye G, Jiang Y, Yang X, et al. Smart nanoparticles undergo phase transition for enhanced cellular uptake and subsequent intracellular drug release in a tumor microenvironment. ACS Applied Materials & Interfaces 2017; 10(1): 278–289. doi: 10.1021/acsami.7b15978 Qi X, Qin J, Fan Y, et al. Carboxymethyl chitosan-modified polyamidoamine dendrimer enables progressive drug targeting of tumors via pH-Sensitive charge inversion. Journal of Biomedical Nanotechnology 2016; 12(4): 667–678. doi: 10.1166/jbn.2016.2206 Nguyen TL, Nguyen TH, Nguyen CK, et al. Redox and pH responsive poly (amidoamine) dendrimer-heparin conjugates via disulfide linkages for letrozole delivery. BioMed Research International 2017; 2017: 1–7. doi: 10.1155/2017/8589212 Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomaterialia 2017; 55: 153–162. doi: 10.1016/j.actbio.2017.02.047 Bijukumar D, Choonara YE, Murugan K, et al. Design of an inflammation-sensitive polyelectrolyte-based topical drug delivery system for arthritis. AAPS PharmSciTech 2015; 17(5): 1075–1085. doi: 10.1208/s12249-015-0434-6 Luo Z, Jiang L, Yang S, et al. Light‐induced redox‐responsive smart drug delivery system by using selenium‐containing polymer@MOF shell/core nanocomposite. Advanced Healthcare Materials 2019; 8(15). doi: 10.1002/adhm.201900406 Li Y, Zhao R, Hu F, et al. Laponite/lauric arginate stabilized AKD Pickering emulsions with shell-tunable hydrolytic resistance for use in sizing paper. Applied Clay Science 2021; 206: 106085. doi: 10.1016/j.clay.2021.106085 Ee Low L, Tan LTH, Goh BH, et al. Magnetic cellulose nanocrystal stabilized Pickering emulsions for enhanced bioactive release and human colon cancer therapy. International Journal of Biological Macromolecules 2019; 127: 76–84. doi: 10.1016/j.ijbiomac.2019.01.037 Sun N, Li Q, Luo D, et al. Dual-responsive pickering emulsion stabilized by Fe3O4 nanoparticles hydrophobized in situ with an electrochemical active molecule. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021; 608: 125588. doi: 10.1016/j.colsurfa.2020.125588 Islam MR, Gao Y, Li X, et al. Stimuli-responsive polymeric materials for human health applications. Chinese Science Bulletin 2014; 59(32): 4237–4255. doi: 10.1007/s11434-014-0545-6 Bratek-Skicki A. Towards a new class of stimuli-responsive polymer-based materials – Recent advances and challenges. Applied Surface Science Advances 2021; 4: 100068. doi: 10.1016/j.apsadv.2021.100068 Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays in Biochemistry 2016; 60(1): 1–8. doi: 10.1042/EBC20150001 Zhang T, Liu GQ, Leong WH, et al. Hybrid nanodiamond quantum sensors enabled by volume phase transitions of hydrogels. Nature Communications 2018; 9(1). doi: 10.1038/s41467-018-05673-9 Yuan W, Wang C, Lei S, et al. Ultraviolet light-, temperature- and pH-responsive fluorescent sensors based on cellulose nanocrystals. Polymer Chemistry 2018; 9(22): 3098–3107. doi: 10.1039/c8py00613j Jia Z, Müller M, Schönherr H. Towards multiplexed bacteria detection by enzyme responsive hydrogels. Macromolecular Symposia 2018; 379(1). doi: 10.1002/masy.201600178 Leu HY, Farhoudi N, Reiche C, et al. Low-cost microfluidic sensors with smart hydrogel patterned arrays using electronic resistive channel sensing for readout. Gels 2018; 4(4): 84. doi: 10.3390/gels4040084 Chatterjee S, Hui CL. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 2019; 24(14): 2547. doi: 10.3390/molecules24142547 Das SS, Bharadwaj P, Bilal M, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020; 12(6): 1397. doi: 10.3390/polym12061397 Yang X, An J, Luo Z, et al. A cyanine-based polymeric nanoplatform with microenvironment-driven cascaded responsiveness for imaging-guided chemo-photothermal combination anticancer therapy. Journal of Materials Chemistry B 2020; 8(10): 2115–2122. doi: 10.1039/c9tb02890k Sun C, Li B, Zhao M, et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. Journal of the American Chemical Society 2019; 141(49): 19221–19225. doi: 10.1021/jacs.9b10043 Yang H, Deng L, Li T, et al. Multifunctional PLGA nanobubbles as theranostic agents: Combining doxorubicin and P-gp siRNA co-delivery into human breast cancer cells and ultrasound cellular imaging. Journal of Biomedical Nanotechnology 2015; 11(12): 2124–2136. doi: 10.1166/jbn.2015.2168 Prabhakar A, Banerjee R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: A theranostic approach. ACS Omega 2019; 4(13): 15567–15580. doi: 10.1021/acsomega.9b01924 Shang M, Wang K, Guo L, et al. Development of novel ST68/PLA-PEG stabilized ultrasound nanobubbles for potential tumor imaging and theranostic. Ultrasonics 2019; 99: 105947. doi: 10.1016/j.ultras.2019.105947 Vijayan VM, Muthu J. Polymeric nanocarriers for cancer theranostics. Polymers for Advanced Technologies 2017; 28(12): 1572–1582. doi: 10.1002/pat.4070 Hu H. Recent advances of bioresponsive nano-sized contrast agents for ultra-high-field magnetic resonance imaging. Frontiers in Chemistry 2020; 8. doi: 10.3389/fchem.2020.00203 Bain J, Legge CJ, Beattie DL, et al. A biomimetic magnetosome: Formation of iron oxide within carboxylic acid terminated polymersomes. Nanoscale 2019; 11(24): 11617–11625. doi: 10.1039/c9nr00498j Aouidat F, Boumati S, Khan M, et al. Design and synthesis of gold-gadolinium-core-shell nanoparticles as contrast agent: A smart way to future nanomaterials for nanomedicine applications. International Journal of Nanomedicine 2019; 14: 9309–9324. doi: 10.2147/ijn.s224805 Pant K, Sedláček O, Nadar RA, et al. Radiolabelled polymeric materials for imaging and treatment of cancer: Quo vadis? Advanced Healthcare Materials 2017; 6(6). doi: 10.1002/adhm.201601115 Sun J, Sun L, Li J, et al. A multi-functional polymeric carrier for simultaneous positron emission tomography imaging and combination therapy. Acta Biomaterialia 2018; 75: 312–322. doi: 10.1016/j.actbio.2018.06.010 Sun N, Zhao L, Zhu J, et al. 131I-labeled polyethylenimine-entrapped gold nanoparticles for targeted tumor SPECT/CT imaging and radionuclide therapy. International Journal of Nanomedicine 2019; 14: 4367–4381. doi: 10.2147/ijn.s203259 Zhang J, Yang C, Zhang R, et al. Biocompatible D–A semiconducting polymer nanoparticle with light‐harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Advanced Functional Materials 2017; 27(13). doi: 10.1002/adfm.201605094 Lyu Y, Fang Y, Miao Q, et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 2016; 10(4): 4472–4481. doi: 10.1021/acsnano.6b00168 Parhi R. Applications of chitosan composites in pharmaceutical and food sectors. In: Al-Ahmed A, Inamuddin (editors). Advanced Applications of Polysaccharides and Their Composites. Research Forum LLC.; 2020. pp. 86–135. Lavrador P, Gaspar VM, Mano JF. Stimuli-responsive nanocarriers for delivery of bone therapeutics – Barriers and progresses. Journal of Controlled Release 2018; 273: 51–67. doi: 10.1016/j.jconrel.2018.01.021 Levingstone T, Ali B, Kearney C, et al. Hydroxyapatite sonosensitization of ultrasound‐triggered, thermally responsive hydrogels: An on‐demand delivery system for bone repair applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2021; 109(10): 1622–1633. doi: 10.1002/jbm.b.34820 Ding Y, Hao Y, Yuan Z, et al. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration. Biomaterials Science 2020; 8(7): 1840–1854. doi: 10.1039/c9bm01924c Li X, Bian S, Zhao M, et al. Stimuli-responsive biphenyl-tripeptide supramolecular hydrogels as biomimetic extracellular matrix scaffolds for cartilage tissue engineering. Acta Biomaterialia 2021; 131: 128–137. doi: 10.1016/j.actbio.2021.07.007 Liang X, Wang X, Xu Q, et al. Rubbery chitosan/carrageenan hydrogels constructed through an electroneutrality system and their potential application as cartilage scaffolds. Biomacromolecules 2018; 19(2): 340–352. doi: 10.1021/acs.biomac.7b01456 Aust L, Devlin B, Foster SJ, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004; 6(1): 7–14. doi: 10.1080/14653240310004539 Li Z, Zhu D, Hui Q, et al. Injection of ROS‐responsive hydrogel loaded with basic fibroblast growth factor into the pericardial cavity for heart repair. Advanced Functional Materials 2021; 31(15). doi: 10.1002/adfm.202004377 Malki M, Shapira A, Dvir T. Chondroitin sulfate-AuNRs electroactive scaffolds for on-demand release of biofactors. Journal of Nanobiotechnology 2022; 20(1). doi: 10.1186/s12951-022-01261-8 Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances 2008; 26(1): 1–21. doi: 10.1016/j.biotechadv.2007.07.009 Xu C, Guan S, Wang S, et al. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Materials Science and Engineering: C 2018; 84: 32–43. doi: 10.1016/j.msec.2017.11.032 Dong M, Shi B, Liu D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a damaged peripheral nerve. ACS Nano 2020; 14(12): 16565–16575. doi: 10.1021/acsnano.0c05197 Tavakoli S, Klar AS. Bioengineered skin substitutes: Advances and future trends. Applied Sciences 2021; 11(4): 1493. doi: 10.3390/app11041493 Palem RR, Rao KM, Shimoga G, et al. Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay. International Journal of Biological Macromolecules 2021; 178: 464–476. doi: 10.1016/j.ijbiomac.2021.02.195 Zhang K, Lv H, Zheng Y, et al. Nanofibrous hydrogels embedded with phase-change materials: Temperature-responsive dressings for accelerating skin wound healing. Composites Communications 2021; 25: 100752. doi: 10.1016/j.coco.2021.100752 Wei M, Gao Y, Li X, et al. Stimuli-responsive polymers and their applications. Polymer Chemistry 2017; 8(1): 127–143. doi: 10.1039/c6py01585a Yasa IC, Tabak AF, Yasa O, et al. 3D‐printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Advanced Functional Materials 2019; 29(17). doi: 10.1002/adfm.201808992 Hu X, Yasa IC, Ren Z, et al. Magnetic soft micromachines made of linked microactuator networks. Science Advances 2021; 7(23). doi: 10.1126/sciadv.abe8436 El-Husseiny HM, Mady EA, Hamabe L, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio 2022; 13: 100186. doi: 10.1016/j.mtbio.2021.100186 Jiang Y, Hu C, Cheng H, et al. Spontaneous, straightforward fabrication of partially reduced graphene oxide–polypyrrole composite films for versatile actuators. ACS Nano 2016; 10(4): 4735–4741. doi: 10.1021/acsnano.6b01233 Li X, Serpe MJ. Understanding the shape memory behavior of self‐bending materials and their use as sensors. Advanced Functional Materials 2016; 26(19): 3282–3290. doi: 10.1002/adfm.201505391 Breger JC, Yoon C, Xiao R, et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Applied Materials & Interfaces 2015; 7(5): 3398–3405. doi: 10.1021/am508621s Molla MR, Rangadurai P, Antony L, et al. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. Nature Chemistry 2018; 10(6): 659–666. doi: 10.1038/s41557-018-0027-6



DOI: https://doi.org/10.24294/can.v6i2.4479

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Rabinarayan Parhi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.