An investigation on 45S5 nanobioactive glass using FTIR and Raman spectroscopy

Sharda Sundaram Sanjay, Pratibha Yadav, Nidhi Asthana, Mrigank Mauli Dwivedi, Kamlesh Pandey

Article ID: 4152
Vol 6, Issue 2, 2023

VIEWS - 283 (Abstract) 116 (PDF)

Abstract


Bioactive materials are those that cause a number of interactions at the biomaterial-living tissue inter-face that result in the evolution of a mechanically strong association between them. For this reason, an implantable material’s bioactive behavior is highly advantageous. Silicate glasses are encouraged to be used as bioactive glasses due to their great biocompatibility and beneficial biological effects. The sol-gel method is the most effective for preparing silicate glasses because it increases the material’s bioactivity by creating pores. Glass densities are altered by the internal network connectivity between network formers and network modifiers. The increase in the composition of alkali or alkaline oxides reduces the number of bridging oxygens and increases the number of non-bridging oxygens by retaining the overall charge neutrality between the alkali or alkaline cation and oxygen anion. Higher drying temperatures increase pore densities, while the melt-quenching approach encourages the creation of higher density glasses. Band assignments for the BAG structure can be explained in detail using Fourier Transform Infrared (FTIR) and Raman spectroscopic investigations. Raman spectroscopy makes it simple to measure the concentration of the non-bridging oxygens in the silica matrix.


Keywords


bioactive glass (BAG); FT-IR; Raman spectra; melt-quench; EPMA

Full Text:

PDF


References


1. Silva MJ, Alves W, Graeff CFO, et al. Modified synthesis and physicochemical characterization of a bioglass-based composite for guided bone regeneration. The Scientific World Journal 2021; 2021: 1–9. doi: 10.1155/2021/4295433

2. Chapekar MS. Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research 2000; 53(6): 617–620. doi: 10.1002/1097-4636(2000)53: 6<617:: aid-jbm1>3.0.co,2-c

3. Cao W, Hench LL. Bioactive materials. Ceramics International 1996; 22(6): 493–507. doi: 10.1016/0272-8842(95)00126-3

4. Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research 1971; 5(6): 117–141. doi: 10.1002/jbm.820050611

5. Kokubo T. Bioactive glass ceramics: Properties and applications. Biomaterials 1991; 12(2): 155–163. doi: 10.1016/0142-9612(91)90194-f

6. Adams LA, Essien ER, Adesalu AT, et al. Bioactive glass 45S5 from diatom biosilica. Journal of Science: Advanced Materials and Devices 2017; 2(4): 476–482. doi: 10.1016/j.jsamd.2017.09.002

7. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295(5557): 1014–1017. doi: 10.1126/science.1067404

8. Jones JR. Review of bioactive glass: From hench to hybrids. Acta Biomaterialia 2013; 9(1): 4457–4486. doi: 10.1016/j.actbio.2012.08.023

9. Hench LL. The story of Bioglass®. Journal of Materials Science: Materials in Medicine 2006; 17(11): 967–978. doi: 10.1007/s10856-006-0432-z

10. Sepulveda P, Jones JR, Hench LL. Characterization of melt‐derived 45S5 and sol‐gel–derived 58S bioactive glasses. Journal of Biomedical Materials Research 2001; 58(6): 734–740. doi: 10.1002/jbm.10026

11. Zachariasen WH. The atomic arrangement in glass. Journal of the American Chemical Society 1932; 54(10): 3841–3851. doi: 10.1021/ja01349a006

12. Smekal A. The nature of the mechanical strength of glass. J. Soc. of Glass Tech 1936; 20: 432–448.

13. Gibbs GV, Cox DF, Crawford TD, et al. Classification of metal-oxide bonded interactions based on local potential- and kinetic-energy densities. The Journal of Chemical Physics 2006; 124(8). doi: 10.1063/1.2161425

14. Albert-Mercier C, Follet C, Pardini A, Revel B. Influence of P2O5 content on the structure of SiO2-Na2O-CaO-P2O5 bioglasses by 29Si and 31P MAS-NMR. Journal of Non-Crystalline Solids 2011; 357(24): 3901–3909. doi: 10.1016/j.jnoncrysol.2011.07.042

15. Deshmukh K, Kovářík T, Křenek T, et al. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: A review. RSC Advances 2020; 10(56): 33782–33835. doi: 10.1039/d0ra04287k

16. Hannon AC. Basic concepts of network glass structure. In: Richet P, Concradt R, Takada A, Dyon J (editors). Encyclopedia of Glass Science, Technology, History, and Culture. John Wiley & Sons; 2021. pp. 129–140. doi: 10.1002/9781118801017.ch2.1

17. Wallace KE, Hill RG, Pembroke JT, et al. Influence of sodium oxide content on bioactive glass properties. Journal of Materials Science: Materials in Medicine 1999; 10(12): 697–701. doi: 10.1023/a: 1008910718446

18. Kuzielova E, Palou M, Kozankova J. Crystallization Mechanism and bioactivity of Lithium disilicate glasses in relation to CaO, P2O5, CaF2 addition. Ceramic Silikaty 2007; 51(3): 136–141.

19. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Review of Medical Devices 2005; 2(3): 303–317. doi: 10.1586/17434440.2.3.303

20. Verweij H, Konijnendijk WL. Structural units in K2O‐PbO‐SiO2 glasses by Raman spectroscopy. Journal of the American Ceramic Society 1976; 59(11–12): 517–521. doi: 10.1111/j.1151-2916.1976.tb09422.x

21. Vyas VK, Kumar AS, Singh SP, et al. Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass. Bulletin of Materials Science 2016; 39(5): 1355–1361. doi: 10.1007/s12034-016-1242-7

22. Ershad M, Ali A, Mehta NS, et al. Mechanical and biological response of (CeO2 + La2O3)-substituted 45S5 bioactive glasses for biomedical application. Journal of the Australian Ceramic Society 2020; 56(4): 1243–1252. doi: 10.1007/s41779-020-00471-3

23. Oliveira AAR, Gomide VS, Leite MDF, et al. Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol-gel derived hybrid foams. Materials Research 2009; 12(2): 239–244. doi: 10.1590/s1516-14392009000200021

24. Aina V, Malavasi G, Fiorio Pla A, et al. Zinc-containing bioactive glasses: Surface reactivity and behaviour towards endothelial cells. Acta Biomaterialia 2009; 5(4): 1211–1222. doi: 10.1016/j.actbio.2008.10.020

25. Kim IY, Kawachi G, Kikuta K, et al. Preparation of bioactive spherical particles in the CaO–SiO2 system through sol–gel processing under coexistence of poly(ethylene glycol). Journal of the European Ceramic Society 2008; 28(8): 1595–1602. doi: 10.1016/j.jeurceramsoc.2007.11.006

26. Mohan Babu M, Syam Prasad P, Hima Bindu S, et al. Investigations on physico-mechanical and spectral studies of Zn2+ doped P2O5-based bioglass system. Journal of Composites Science 2020; 4(3): 129. doi: 10.3390/jcs4030129




DOI: https://doi.org/10.24294/can.v6i2.4152

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Sharda Sundaram Sanjay, Pratibha Yadav, Nidhi Asthana, Mrigank Mauli Dwivedi, Kamlesh Pandey

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.