Spin thermoelectric effects of new-style one-dimensional carbon-based nanomaterials
Vol 4, Issue 1, 2021
VIEWS - 7277 (Abstract)
Abstract
Keywords
Full Text:
PDFReferences
1. Novoselov KS, Geim AK, Morozov SV. Electric field effect in atomically thin carbon films. Science 2004; 306: 666–669.
2. Son Y, Cohen ML, Louie SG. Energy gaps in graphene nanoribbons. Physical Review Letters 2007; 98(8).
3. Xu C, Luo G, Liu Q, et al. Giant magnetoresistance in silicene nanoribbons. Nanoscale 2012; 4: 3111–3117.
4. Son Y, Cohen M L, Louie SG. Half-metallic graphene nanoribbons. Nature 2006; 444: 347.
5. Wu T, Wang X, Zhai M, et al. Negativedifferential spin conductance in doped zigzag graphenenanoribbons. Applied Physical Letters 2012; 100(5): 2112.
6. Maunárriz J, Gaul C, Malyshev AV, et al. Strong spin-dependent negative differential resistance in composite graphene superlattices. Physical Review B Condensed Matter 2012; 88(15): 5423.
7. Jiang C, Wang X, Zhai M. Spin negative differential resistance in edge doped zigzag graphene nanoribbons. Carbon an International Journal Sponsored by the American Carbon Society 2014; 68: 406.
8. Uchida K, Takahashi S, Harii K, et al. Observation of the spin Seebeck effect. Nature 2008; 455: 778.
9. Dubi Y, Di Ventra M. Thermo-spin effects in a quantum dot connected to ferromagnetic leads. Physical Review B Condensed Matter 2009; 79(8): 1302(R).
10. Jaworski C M, Yang J, Mack S, et al. Observation of spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater 2010; 9: 898.
11. Uchida K, Adachi H, et al. Long-range spin Seebeck effect and acoustic spin pumping. Nature Mater 2011; 10: 737.
12. Adachi H, Ohe J, Takahashi S, et al. Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Physical Review B 2011; 83(9): 4410.
13. Dubi Y, Di Ventra M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Review of Modern Physics 2011; 83: 131.
14. Liu Y, Chi F, Yang X, et al. Pure spin thermoelectric generator based on a rashba quantum dot molecule. Journal of Applied Physics 2011; 109(5): 3712.
15. Liu Y, Yang X, Chi F, et al. A proposal for time-dependent pure-spin-current generators. Applied Physics Letters 2012; 101(21): 3109.
16. Liu Y, Wang X, Chi F. Non-magnetic doping induced a high spin-filter efficiency and large spin Seebeck effect in zigzag graphene nanoribbons. Journal of Materials Chemistry C 2013; 2013(1): 3756–3776.
17. Yang X, Liu Y, Zhang X, et al. Perfect spin filtering and large spin thermoelectric effects in organic transition-metal molecular junctions. Physical Chemistry Chemical Physics Cambridge Royal Society of Chemistry 2014; 16: 11349–11357.
18. Liu Y, Zhang X, Wang X, et al. Spin-resolved Fano resonances induced large spin Seebeck effects in grapheme carbon-chain junctions. Applied Physics Letters 2014; 104(24): 2412.
19. Yang X, Liu Y, Wang X, et al. Large spin Seebeck effects in zigzag-edge silicene nanoribbons. Aip Advances 2014; 4(8): 7116.
20. Yang X, Zhang X, Hong X, et al. Temperature-controlled giant thermal magnetoresistance behaviors in doped zigzagedged silicene nanoribbons. Rsc Advances 2014; 4: 48539–48546.
21. Yang X, Zhou W, Hong X, et al. Half-metallic properties, single-spin negative differential resistance, and large singlespin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons. The Journal of Chemical Physics 2015; 142(2): 4706.
22. Jin C, Lan H, Peng L, et al. Deriving carbon atomic chains from graphene. Physical Review Letters 2009; 102(20): 5501.
23. Shen L, Zeng M, Yang S, et al. Electron transport properties of atomic carbon nanowires between graphene electrodes. Journal of the American Chemical Society 2010; 132: 11481–11486.
24. Dong Y, Wang X, Zhai M, et al. Half-metallicity in aluminum-doped zigzag silicene nanoribbons. The Journal of Physical Chemistry C 2013; 117(37): 18845–18850.
25. Kobayashi K, Aikawa H, Katsumoto S, et al. Tuning of the Fano effect through a quantum dot in an Aharonov-bohm Interferometer. Physics Review Letters 2002; 88: 256806.
26. Liu Y, Yang X. Enhancement of thermoelectric efficiency in a double-quantum-dot molecular junction. Journal of Applied Physics 2010; 108(2): 3710.
27. Taylor T, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B 2001; 63(24): 5407.
28. Brandbyge M, Mozos JL, Ordejon P, et al. Density-functional method for non-equilibrium electron transport. Physical Review B, Condensed Matter 2002; 65(16): 5401.
29. Yang X, Liu Y. Pure spin current in a double quantum dot device generated by thermal. Journal of Applied Physics 2013; 113(16): 4310.
DOI: https://doi.org/10.24294/can.v4i1.1323
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Yushen Liu, Jinfu Feng, Xuefeng Wang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.