Graphene quantum dot for thermoplastic nanocomposites—Scope and opportunities
Vol 8, Issue 2, 2025
VIEWS - 2588 (Abstract)
Abstract
Quantum dot can be seen as an amazing nanotechnological discovery, including inorganic semiconducting nanodots as well as carbon nanodots, like graphene quantum dots. Unlike pristine graphene nanosheet having two dimensional nanostructure, graphene quantum dot is a zero dimensional nanoentity having superior aspect ratio, surface properties, edge effects, and quantum confinement characters. To enhance valuable physical properties and potential prospects of graphene quantum dots, various high-performance nanocomposite nanostructures have been developed using polymeric matrices. In this concern, noteworthy combinations of graphene quantum dots have been reported for a number of thermoplastic polymers, like polystyrene, polyurethane, poly(vinylidene fluoride), poly(methyl methacrylate), poly(vinyl alcohol), and so on. Due to nanostructural compatibility, dispersal, and interfacial aspects, thermoplastics/graphene quantum dot nanocomposites depicted unique microstructure and technically reliable electrical/thermal conductivity, mechanical/heat strength, and countless other physical properties. Precisely speaking, thermoplastic polymer/graphene quantum dot nanocomposites have been reported in the literature for momentous applications in electromagnetic interference shielding, memory devices, florescent diodes, solar cells photocatalysts for environmental remediation, florescent sensors, antibacterial, and bioimaging. To the point, this review article offers an all inclusive and valuable literature compilation of thermoplastic polymer/graphene quantum dot nanocomposites (including design, property, and applied aspects) for field scientists/researchers to carry out future investigations on further novel designs and valued property-performance attributes.
Keywords
Full Text:
PDFReferences
- Ray SS, Temane LT, Orasugh JT. Polymer nanocomposites: Graphene-Bearing Polymer Composites: Applications to Electromagnetic Interference Shielding and Flame-Retardant Materials. Springer; 2024. pp. 1–5.
- Kausar A. Sustainable membrane technology for water purification—Manufacturing, recycling and environmental impacts. Journal of Polymer Science and Engineering. 2024; 7(1): 5976.
- Cho H, Bae G, Hong BH. Engineering functionalization and properties of graphene quantum dots (GQDs) with controllable synthesis for energy and display applications. Nanoscale. 2024.
- ShayanMehr M. Carbon nanostructures for reinforcement of polymers in mechanical and aerospace engineering. Aerospace Polymeric Materials. 2022; 61–84.
- Mohammed SJ, Hawaiz FE, Aziz SB, et al. Organic soluble nitrogen-doped carbon dots (ONCDs) to reduce the optical band gap of PVC polymer: Breakthrough in polymer composites with improved optical properties. Optical Materials. 2024; 149: 115014.
- Shrikhande R, Rana DK, Molla A, et al. Functional and ultrastretchable thermoplastic elastomeric materials: Influence of carbon dots on fluorescence, dielectric and mechanical properties. Journal of Applied Polymer Science. 2024; e55608.
- Valim FCF, Oliveira GP, de Paiva LB, et al. Influence of annealing-induced phase separation on the shape memory effect of graphene-based thermoplastic polyurethane nanocomposites. Journal of Applied Polymer Science. 2024; 141(1): e54750.
- Garg R, Gonuguntla S, Sk S, et al. Sputtering thin films: Materials, applications, challenges and future directions. Advances in Colloid and Interface Science. 2024; 103203.
- Arab K, Jafari A, Shahi F. The role of graphene quantum dots in cutting-edge medical therapies. Polymers for Advanced Technologies. 2024; 35(9): e6571.
- Mallick P. Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures. In: Materials, Design and Manufacturing for Lightweight Vehicles. Elsevier; 2021. pp. 187–228.
- Costa AA, Martinho PG, Barreiros FM. Comparison between the mechanical recycling behaviour of amorphous and semicrystalline polymers: A case study. Recycling. 2023; 8(1): 12.
- Shen G, Hu J, Chen C, et al. In-situ crystallization process monitoring of thermoplastic composites by dielectric sensing during laser-assisted automated fiber placement. Journal of Manufacturing Processes. 2024; 124(3): 479–488.
- Pawlak A. Crystallization of Polymers with a Reduced Density of Entanglements. Crystals. 2024; 14(4): 385.
- Ullah H, Khan RU, Silberschmidt VV. Assessing pseudo-ductile behavior of woven thermoplastic composites under tension and bending. Composites Science and Technology. 2024; 248(22): 110465.
- Mohite AS, Rajpurkar YD, More AP. Bridging the gap between rubbers and plastics: A review on thermoplastic polyolefin elastomers. Polymer Bulletin. 2022; 79(2): 1309–1343.
- Haider S, Khan Y, Almasry WA, et al. Thermoplastic nanocomposites and their processing techniques. In: Thermoplastic-Composite Materials. IntechOpen; 2012.
- Demski S, Misiak M, Majchrowicz K, et al. Mechanical recycling of CFRPs based on thermoplastic acrylic resin with the addition of carbon nanotubes. Scientific Reports. 2024; 14(1): 11550.
- Olam M. Mechanical and thermal properties of HDPE/PET microplastics, applications, and impact on environment and life. In: Advances and Challenges in Microplastics. IntechOpen; 2023.
- Yan Y, Han M, Jiang Y, et al. Electrically Conductive Polymers for Additive Manufacturing. ACS Applied Materials & Interfaces. 2024; 16(5): 5337–5354.
- Zotti A, Zuppolini S, Borriello A, et al. The Effect of Carbon-Based Nanofillers on Cryogenic Temperature Mechanical Properties of CFRPs. Polymers. 2024; 16(5): 638.
- Wu B, Huang J, Yu Y, et al. In-depth investigation of how carbon nanofiller dispersion affects microcellular foaming behavior in poly (butylene succinate) nanocomposites. The Journal of Supercritical Fluids. 2024; 209: 106252.
- Sarath KP, Jayanarayanan K, Balachandran M. High-performance thermoplastic polyaryletherketone/carbon fiber composites: Comparison of plasma, carbon nanotubes/graphene nano-anchoring, surface oxidation techniques for enhanced interface adhesion and properties. Composites Part B: Engineering. 2023; 253: 110560.
- Guney Yilmaz S, Ferik E, Birak SB, et al. High-performance thermoplastic nanocomposites for aerospace applications: A review of synthesis, production, and analysis. Journal of Reinforced Plastics and Composites. 2024.
- de Arquer FPG, Talapin DV, Klimov VI, et al. Semiconductor quantum dots: Technological progress and future challenges. Science. 2021; 373(6555).
- Zhao F, Li X, Zuo M, et al. Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review. Journal of Environmental Chemical Engineering. 2023; 11(2): 109487. doi: 10.1016/j.jece.2023.109487
- Amor AB, Hemmami H, Amor IB, et al. Advances in carbon quantum dot applications: Catalysis, sensing, and biomedical innovations. Materials Science in Semiconductor Processing. 2025; 185: 108945. doi: 10.1016/j.mssp.2024.108945
- Mahto B, Mahanty B, Hait S, et al. A review of coal-based carbon and graphene quantum dots: Synthesis, properties, and applications. Materials Science and Engineering: B. 2024; 304: 117386. doi: 10.1016/j.mseb.2024.117386
- Mahajan MR, Patil PO. Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: A review. Inorganic Chemistry Communications. 2022; 144: 109883. doi: 10.1016/j.inoche.2022.109883
- Othman AM, Kher-Elden MA, Ibraheem F, et al. Analogous electronic states in graphene and planer metallic quantum dots. Scientific Reports. 2024; 14(1): 13471. doi: 10.1038/s41598-024-63465-2
- Manjubaashini N, Thangadurai TD, Nataraj D, et al. Physicochemical Properties of Graphene Quantum Dots. In: Graphene Quantum Dots: The Emerging Luminescent Nanolights. Springer Nature Singapore; 2024. pp. 117–131.
- Cui Y, Liu L, Shi M, et al. A Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application. C. 2024; 10(1): 7. doi: 10.3390/c10010007
- Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: From chemistry and physics to applications. Advanced Materials. 2019; 31(21). doi: 10.1002/adma.201808283
- Dananjaya V, Marimuthu S, Yang R, et al. Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites. Progress in Materials Science. 2024; 144: 101282. doi: 10.1016/j.pmatsci.2024.101282
- Pandey M, Nazar R, Elella MHA, et al. A Comprehensive Review of Recent Developments in Biomedical Materials Based on Graphene-Modified Bio-Nanocomposites. BioNanoScience. 2024; 15(1): 125. doi: 10.1007/s12668-024-01757-7
- Markandan K. Additive Manufacturing of Polymer Composites: Processing and Structural Design. Sustainable Structural Materials. 2025; 1–17. doi: 10.1201/9781003362227-1
- Yang H, Gao S, Xu X, et al. Enhancing heat energy transfer at graphene/polypropylene interface. Applied Energy. 2025; 381: 125134. doi: 10.1016/j.apenergy.2024.125134
- Liu L, Xu C, Yang Y, et al. Graphene-based polymer composites in thermal management: Materials, structures and applications. Materials Horizons. 2025; 12(1): 64–91. doi: 10.1039/d4mh00846d
- Vandana M, Devendrappa H, Padova PD, et al. Polymer nanocomposite graphene quantum dots for high-efficiency ultraviolet photodetector. Nanomaterials. 2022; 12(18): 3175. doi: 10.3390/nano12183175
- Prasittisopin L, Termkhajornkit P, Kim YH. Review of concrete with expanded polystyrene (EPS): Performance and environmental aspects. Journal of Cleaner Production. 2022; 366: 132919. doi: 10.1016/j.jclepro.2022.132919
- Kelpsiene E, Ekvall MT, Lundqvist M, et al. Review of ecotoxicological studies of widely used polystyrene nanoparticles. Environmental Science: Processes & Impacts. 2022; 24(1): 8–16. doi: 10.1039/d1em00375e
- Li R, Hu J, Li Y, et al. Graphene-Based, Flexible, Wearable Piezoresistive Sensors with High Sensitivity for Tiny Pressure Detection. Sensors. 2025; 25(2): 423. doi: 10.3390/s25020423
- Krishnan MR, Alsharaeh EH. Facile fabrication of thermo-mechanically reinforced polystyrene-graphene nanocomposite aerogel for produced water treatment. Journal of Porous Materials. 2024; 31(4): 1363–1373. doi: 10.1007/s10934-024-01602-y
- Ma R, Shen R, Quan Y, et al. Tunable flammability studies of graphene quantum dots-based polystyrene nanocomposites using microscale combustion calorimeter. Journal of Thermal Analysis and Calorimetry. 2022; 147(19): 10383–10390. doi: 10.1007/s10973-022-11277-9
- Kong Y, Wang R, Zhou Q, et al. Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review. Journal of Contaminant Hydrology. 2025; 269: 104499. doi: 10.1016/j.jconhyd.2025.104499
- Ronca S. Polyethylene. In: Brydson’s Plastics Materials. Elsevier; 2017. pp. 247–278.
- Schwab ST, Baur M, Nelson TF, et al. Synthesis and Deconstruction of Polyethylene-type Materials. Chemical Reviews. 2024; 124(5): 2327–2351. doi: 10.1021/acs.chemrev.3c00587
- Rezvani Ghomi E, Khosravi F, Mossayebi Z, et al. The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules. 2020; 25(21): 5157. doi: 10.3390/molecules25215157
- Wang Y, Yang RC, Gover R, et al. Graphene Origami Amplifies Mechanical Properties of Polyethylene Nanocomposites. ACS Applied Materials & Interfaces. 2025; 17(2): 3829–3839. doi: 10.1021/acsami.4c14065
- Yin S, Duvigneau J, Vancso GJ. Fluorescent polyethylene by in situ facile synthesis of carbon quantum dots facilitated by silica nanoparticle agglomerates. ACS Applied Polymer Materials. 2021; 3(11): 5517–5526. doi: 10.1021/acsapm.1c00821
- Zeng Z, Li W, Li Y, et al. Lubrication behavior of fluorescent graphene quantum dots hybrid polyethylene glycol lubricant. Applied Surface Science. 2023; 612: 155933. doi: 10.1016/j.apsusc.2022.155933
- Ao D, Fan X, Zeng Z, et al. Tribological properties of graphene quantum dot hybrid polyethylene glycol lubricated molybdenum disulfide films. Tribology International. 2024; 193: 109437. doi: 10.1016/j.triboint.2024.109437
- Kim HJ, Lee CK, Seo JG, et al. Highly luminescent polyethylene glycol-passivated graphene quantum dots for light emitting diodes. RSC Advances. 2020; 10(46): 27418–27423. doi: 10.1039/d0ra02257h
- Pourmadadi M, Tajiki A, Abdouss M, et al. Novel carbon quantum dots incorporated polyacrylic acid/polyethylene glycol pH-sensitive nanoplatform for drug delivery. Inorganic Chemistry Communications. 2024; 159: 111814. doi: 10.1016/j.inoche.2023.111814
- Manap A, Mahalingam S, Rabeya R, et al. Effect of polyethylene glycol in graphene quantum dots for dye-sensitized solar cell. Polymer Bulletin. 2024; 81(12): 10885–10896. doi: 10.1007/s00289-024-05222-z
- Shehata N, Nair R, Boualayan R, et al. Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. Scientific Reports. 2022; 12(1): 8335. doi: 10.1038/s41598-022-11465-5
- Adaval A, Chinya I, Bhatt BB, et al. Poly (vinylidene fluoride)/graphene oxide nanocomposites for piezoelectric applications: Processing, structure, dielectric and ferroelectric properties. Nano-Structures & Nano-Objects. 2022; 31: 100899. doi: 10.1016/j.nanoso.2022.100899
- Xie B, Guo Y, Chen Y, et al. Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Letters. 2025; 17(1): 17. doi: 10.1007/s40820-024-01530-1
- Pusty M, Shirage PM. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. Journal of Alloys and Compounds. 2022; 904: 164060. doi: 10.1016/j.jallcom.2022.164060
- Rodrigues-Marinho T, Tubio CR, Lanceros-Mendez S, et al. Tailoring the electrical response of polyvinylidene fluoride nanocomposites with electrically conductive and dielectric fillers. Advanced Engineering Materials. 2024; 26(1). doi: 10.1002/adem.202301596
- Zhao Y, Wang B, Zeng S, et al. β-phase formation of poly(vinylidene fluoride) foam based on the porous morphology control via supercritical carbon dioxide. Sustainable Materials and Technologies. 2024; 40: e00987. doi: 10.1016/j.susmat.2024.e00987
- Cho S, Lee JS, Jang J. Poly(vinylidene fluoride)/NH2-treated graphene nanodot/reduced graphene oxide nanocomposites with enhanced dielectric performance for ultrahigh energy density capacitor. ACS Applied Materials & Interfaces. 2015; 7(18): 9668–9681. doi: 10.1021/acsami.5b01430
- Tay WY, Ng LY, Ng CY, et al. Incorporation of Silver-Doped Graphene Oxide Quantum Dots in Polyvinylidene Fluoride Membrane for Verapamil Removal. Sustainability. 2022; 14(23): 15843. doi: 10.3390/su142315843
- Zhang F, Yang C, Wang XX, et al. Graphene quantum dots doped PVDF(TBT)/PVP(TBT) fiber film with enhanced photocatalytic performance. Applied Sciences. 2020; 10(2): 596. doi: 10.3390/app10020596
- Ibrahim MA, Nasr GM, Ahmed RM, et al. Physical characterization, biocompatibility, and antimicrobial activity of polyvinyl alcohol/sodium alginate blend doped with TiO2 nanoparticles for wound dressing applications. Scientific Reports. 2024; 14(1): 5391. doi: 10.1038/s41598-024-55818-8
- Kamanina N, Fedorova L, Likhomanova S, et al. Impact of Carbon-Based Nanoparticles on Polyvinyl Alcohol Polarizer Features: Photonics Applications. Nanomaterials. 2024; 14(9): 737. doi: 10.3390/nano14090737
- Abral H, Atmajaya A, Mahardika M, et al. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. Journal of Materials Research and Technology. 2020; 9(2): 2477–2486. doi: 10.1016/j.jmrt.2019.12.078
- Sun Q, Zhang L, Huang M, et al. Modification of starch-derived graphene quantum dots as multifunctional nanofillers to produce polymer starch/polyvinyl alcohol composite films for active packaging. LWT. 2024; 198: 115953. doi: 10.1016/j.lwt.2024.115953
- Arya T, Bohra BS, Tewari C, et al. Influence of bio-resource-derived graphene oxide on the mechanical and thermal properties of poly(vinyl alcohol) nanocomposites. Polymer Composites. 2024; 45(1): 695–708. doi: 10.1002/pc.27808
- Gunes BA, Kirlangic OF, Kilic M, et al. Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells. ACS Omega. 2024; 9(11): 13342–13358. doi: 10.1021/acsomega.3c10324
- Park SW, Im SH, Hong WT, et al. Lignin-derived carbon quantum dot/PVA films for totally blocking UV and high-energy blue light. International Journal of Biological Macromolecules. 2024; 268: 131919. doi: 10.1016/j.ijbiomac.2024.131919
- Kharangarh PR, Ravindra NM, Singh G, Umapathy S. Synthesis of luminescent graphene quantum dots from biomass waste materials for energy-related applications—An overview. Energy Storage. 2022; 5(3). doi: 10.1002/est2.390
- Sharma VD, Kansay V, Chandan G, et al. Down-conversion luminescence nanocomposites based on nitrogen-doped carbon quantum dots@ bioplastic for applications in optical displays, LEDs and UVC tubes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2024; 312: 124065. doi: 10.1016/j.saa.2024.124065
- Fauzi NIM, Fen YW, Eddin FBK, et al. Structural and Optical Properties of Graphene Quantum Dots−Polyvinyl Alcohol Composite Thin Film and Its Potential in Plasmonic Sensing of Carbaryl. Nanomaterials. 2022; 12(22): 4105. doi: 10.3390/nano12224105
- Ogi T, Iwasaki H, Aishima K, et al. Transient nature of graphene quantum dot formation via a hydrothermal reaction. RSC Adv. 2014; 4(99): 55709–55715. doi: 10.1039/c4ra09159k
- Elumalai D, Rodríguez B, Kovtun G, et al. Nanostructural Characterization of Luminescent Polyvinyl Alcohol/Graphene Quantum Dots Nanocomposite Films. Nanomaterials. 2023; 14(1): 5. doi: 10.3390/nano14010005
- Sangabathula O, Kandasamy M, Chakraborty B, et al. Experimental and theoretical insights into colossal supercapacitive performance of graphene quantum dots incorporated Ni3S2/CoS2/MoS2 electrode. Journal of Energy Storage. 2023; 65: 107274. doi: 10.1016/j.est.2023.107274
- Saleem Y, Sadecka K, Korkusinski M, et al. Theory of Excitons in Gated Bilayer Graphene Quantum Dots. Nano Letters. 2023; 23(7): 2998–3004. doi: 10.1021/acs.nanolett.3c00406
- Rani P, Dalal R, Srivastava S. Effect of surface modification on optical and electronic properties of graphene quantum dots. Applied Surface Science. 2023; 609: 155379. doi: 10.1016/j.apsusc.2022.155379
- Dehghani-Dashtabi M, Hekmatara H. Structural, electrical and EMI shielding property of carbon nanotube decorated magnetic/ceramic nanoparticles. Scientific Reports. 2025; 15(1): 1311. doi: 10.1038/s41598-025-85378-4
- Banerjee S, Sharma R, Kar KK. Nanocomposites Based on Carbon Nanomaterials and Electronically Nonconducting Polymers. In: Composite Materials. Springer; 2017. pp. 251–280.
- Tofighy MA, Mohammadi T. Barrier, Diffusion, and Transport Properties of Rubber Nanocomposites Containing Carbon Nanofillers. In: Carbon-Based Nanofillers and Their Rubber Nanocomposites. Elsevier; 2019. pp. 253–285.
- Nagornaya MN, Razdyakonova GI, Khodakova SY. The effect of functional groups of carbon black on rubber properties. Procedia Engineering. 2016; 152: 563–569. doi: 10.1016/j.proeng.2016.07.656
- Modak P, Kondawar SB, Nandanwar DV. Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Materials Science. 2015; 10: 588–594. doi: 10.1016/j.mspro.2015.06.010
- Jalali A, Rajabi-Abhari A, Zhang H, et al. Cultivation of In situ foam 3D-printing: Lightweight and flexible triboelectric nanogenerators employing polyvinylidene fluoride/graphene nanocomposite foams with superior EMI shielding and thermal conductivity. Nano Energy. 2025; 134: 110554. doi: 10.1016/j.nanoen.2024.110554
- Carvalho AS, Santos AR, Cabral DCO, et al. Binder-free ultrathin pellets of nanocomposites based on Fe3O4@nitrogen-doped reduced graphene oxide aerogel for electromagnetic interference shielding. Journal of Alloys and Compounds. 2024; 978: 173329. doi: 10.1016/j.jallcom.2023.173329
- Jiang D, Murugadoss V, Wang Y, et al. Electromagnetic Interference Shielding Polymers and Nanocomposites—A Review. Polymer Reviews. 2019; 59(2): 280–337. doi: 10.1080/15583724.2018.1546737
- Lakshmi NV, Tambe P. EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Composite Interfaces. 2017; 24(9): 861–882. doi: 10.1080/09276440.2017.1302202
- Barati F, Avatefi M, Moghadam NB, et al. A review of graphene quantum dots and their potential biomedical applications. Journal of Biomaterials Applications. 2022; 37(7): 1137–1158. doi: 10.1177/08853282221125311
- Chaudhary M, Xin C, Hu Z, et al. Nitrogen-Doped Carbon Quantum Dots on Graphene for Field-Effect Transistor Optoelectronic Memories. Advanced Electronic Materials. 2023; 9(8). doi: 10.1002/aelm.202300159
- Kou L, Li F, Chen W, et al. Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory. Organic Electronics. 2013; 14(6): 1447–1451. doi: 10.1016/j.orgel.2013.03.016
- Bai J, Ren W, Wang Y, et al. High-performance thermoplastic polyurethane elastomer/carbon dots bulk nanocomposites with strong luminescence. High Performance Polymers. 2020; 32(7): 857–867. doi: 10.1177/0954008320907123
- Liu C, Wen M, Mai S, et al. Harnessing nitrogen-doped graphene quantum dots for enhancing the fluorescence and conductivity of the starch-based film. Carbohydrate Polymers. 2023; 303: 120475. doi: 10.1016/j.carbpol.2022.120475
- Chen J, Long Z, Wang S, et al. Biodegradable blends of graphene quantum dots and thermoplastic starch with solid-state photoluminescent and conductive properties. International Journal of Biological Macromolecules. 2019; 139: 367–376. doi: 10.1016/j.ijbiomac.2019.07.211
- Xu S, Zhang S, Zhao H, et al. Electrostatic Attraction-Driven Interaction between TiO2 and Colloidal Carbon Quantum Dots for Enhanced Visible Light Photocatalytic Degradation of Tetracycline and Antibacterial Activity Analysis. Catalysis Letters. 2025; 155(3): 1–14. doi: 10.1007/s10562-025-04939-4
- Mafukidze DM, Nyokong T. Graphene quantum dot-phthalocyanine polystyrene conjugate embedded in asymmetric polymer membranes for photocatalytic oxidation of 4-chlorophenol. Journal of Coordination Chemistry. 2017; 70(21): 3598–3618. doi: 10.1080/00958972.2017.1400664
- Apostolaki MA, Toumazatou A, Antoniadou M, et al. Graphene Quantum Dot-TiO2 Photonic Crystal Films for Photocatalytic Applications. Nanomaterials. 2020; 10(12): 2566. doi: 10.3390/nano10122566
- Soman S, Aswathy PV, Kala R. Covalently modified graphene quantum dot using a thiourea based imprinted polymer for the selective electrochemical sensing of Hg(Ⅱ) ions. Journal of Polymer Research. 2021; 28(9): 359. doi: 10.1007/s10965-021-02716-6
- Nesakumar N, Srinivasan S, Alwarappan S. Graphene quantum dots: Synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Microchimica Acta. 2022; 189(7): 258. doi: 10.1007/s00604-022-05353-y
- Zheng P, Wu N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: A review. Chemistry—An Asian Journal. 2017; 12(18): 2343–2353. doi: 10.1002/asia.201700814
- Masteri-Farahani M, Mashhadi-Ramezani S, Mosleh N. Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020; 229: 118021. doi: 10.1016/j.saa.2019.118021
- Lin J, Huang Y, Huang P. Graphene-based nanomaterials in bioimaging. Biomedical Applications of Functionalized Nanomaterials. 2018; 247–287. doi: 10.1016/b978-0-323-50878-0.00009-4
- Bae G, Cho H, Hong BH. A Review On Synthesis, Properties, And Biomedical Applications Of Graphene Quantum Dots (GQDs). Nanotechnology. 2024; 35(37): 372001. doi: 10.1088/1361-6528/ad55d0
- Khan A, Ezati P, Kim JT, Rhim JW. Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability. Materials Today Sustainability. 2023; 21: 100306. doi: 10.1016/j.mtsust.2022.100306
- Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Frontiers in Bioengineering and Biotechnology. 2024; 11. doi: 10.3389/fbioe.2023.1333752
- Vibhute A, Patil T, Pandey-Tiwari A. Bio-Conjugated Carbon Quantum Dots for Intracellular Uptake and Bioimaging Applications. Journal of Fluorescence. 2025; 1–11. doi: 10.1007/s10895-024-04103-y
- Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications. 2011; 47(24): 6858. doi: 10.1039/c1cc11122a
- Nurunnabi M, Khatun Z, Nafiujjaman M, et al. Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Applied Materials & Interfaces. 2013; 5(16): 8246–8253. doi: 10.1021/am4023863
- Valimukhametova AR, Zub OS, Lee BH, et al. Dual-mode fluorescence/ultrasound imaging with biocompatible metal-doped graphene quantum dots. ACS Biomaterials Science & Engineering. 2022; 8(11): 4965–4975. doi: 10.1021/acsbiomaterials.2c00794
- Mousavi SM, Hashemi SA, Kalashgrani MY, et al. Bioactive graphene quantum dots based polymer composite for biomedical applications. Polymers. 2022; 14(3): 617. doi: 10.3390/polym14030617
- Dar MS, Sahu NK. Graphene quantum dot-crafted nanocomposites: Shaping the future landscape of biomedical advances. Discover Nano. 2024; 19(1): 1–27. doi: 10.1186/s11671-024-04028-2
- Fathima APK, Tharani GR, Sundaramoorthy A, et al. An ultra-sensitive detection of Melamine in milk using Rare-earth doped Graphene Quantum Dots- Synthesis and Optical Spectroscopic approach. Microchemical Journal. 2024; 196: 109670. doi: 10.1016/j.microc.2023.109670
- Sheng L, Huangfu B, Xu Q, et al. A highly selective and sensitive fluorescent probe for detecting Cr(VI) and cell imaging based on nitrogen-doped graphene quantum dots. Journal of Alloys and Compounds. 2020; 820: 153191. doi: 10.1016/j.jallcom.2019.153191
- Gil HM, Price TW, Chelani K, et al. NIR-quantum dots in biomedical imaging and their future. iScience. 2021; 24(3): 102189. doi: 10.1016/j.isci.2021.102189
- Anand A, Unnikrishnan B, Wei SC, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—a minireview. Nanoscale Horizons. 2019; 4(1): 117–137. doi: 10.1039/c8nh00174j
- Rajendiran K, Zhao Z, Pei DS, et al. Antimicrobial activity and mechanism of functionalized quantum dots. Polymers. 2019; 11(10): 1670. doi: 10.3390/polym11101670
- Liu J, Shao J, Wang Y, et al. Antimicrobial activity of zinc oxide–graphene quantum dot nanocomposites: Enhanced adsorption on bacterial cells by cationic capping polymers. ACS Sustainable Chemistry & Engineering. 2019; 7(19): 16264–16273. doi: 10.1021/acssuschemeng.9b03292
DOI: https://doi.org/10.24294/can11484
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.