Graphene quantum dot for thermoplastic nanocomposites—Scope and opportunities

Ayesha Kausar

Article ID: 11484
Vol 8, Issue 2, 2025


Abstract


Quantum dot can be seen as an amazing nanotechnological discovery, including inorganic semiconducting nanodots as well as carbon nanodots, like graphene quantum dots. Unlike pristine graphene nanosheet having two dimensional nanostructure, graphene quantum dot is a zero dimensional nanoentity having superior aspect ratio, surface properties, edge effects, and quantum confinement characters. To enhance valuable physical properties and potential prospects of graphene quantum dots, various high-performance nanocomposite nanostructures have been developed using polymeric matrices. In this concern, noteworthy combinations of graphene quantum dots have been reported for a number of thermoplastic polymers, like polystyrene, polyurethane, poly(vinylidene fluoride), poly(methyl methacrylate), poly(vinyl alcohol), and so on. Due to nanostructural compatibility, dispersal, and interfacial aspects, thermoplastics/graphene quantum dot nanocomposites depicted unique microstructure and technically reliable electrical/thermal conductivity, mechanical/heat strength, and countless other physical properties. Precisely speaking, thermoplastic polymer/graphene quantum dot nanocomposites have been reported in the literature for momentous applications in electromagnetic interference shielding, memory devices, florescent diodes, solar cells photocatalysts for environmental remediation, florescent sensors, antibacterial, and bioimaging. To the point, this review article offers an all inclusive and valuable literature compilation of thermoplastic polymer/graphene quantum dot nanocomposites (including design, property, and applied aspects) for field scientists/researchers to carry out future investigations on further novel designs and valued property-performance attributes.


Keywords


thermoplastics; graphene quantum dot; nanocomposite; EMI shielding; memory devices; bioimaging

Full Text:

PDF


References


1. Ray SS, Temane LT, Orasugh JT. Polymer nanocomposites: Graphene-Bearing Polymer Composites: Applications to Electromagnetic Interference Shielding and Flame-Retardant Materials. Springer; 2024. pp. 1–5.

2. Kausar A. Sustainable membrane technology for water purification—Manufacturing, recycling and environmental impacts. Journal of Polymer Science and Engineering. 2024; 7(1): 5976.

3. Cho H, Bae G, Hong BH. Engineering functionalization and properties of graphene quantum dots (GQDs) with controllable synthesis for energy and display applications. Nanoscale. 2024.

4. ShayanMehr M. Carbon nanostructures for reinforcement of polymers in mechanical and aerospace engineering. Aerospace Polymeric Materials. 2022; 61–84.

5. Mohammed SJ, Hawaiz FE, Aziz SB, et al. Organic soluble nitrogen-doped carbon dots (ONCDs) to reduce the optical band gap of PVC polymer: Breakthrough in polymer composites with improved optical properties. Optical Materials. 2024; 149: 115014.

6. Shrikhande R, Rana DK, Molla A, et al. Functional and ultrastretchable thermoplastic elastomeric materials: Influence of carbon dots on fluorescence, dielectric and mechanical properties. Journal of Applied Polymer Science. 2024; e55608.

7. Valim FCF, Oliveira GP, de Paiva LB, et al. Influence of annealing-induced phase separation on the shape memory effect of graphene-based thermoplastic polyurethane nanocomposites. Journal of Applied Polymer Science. 2024; 141(1): e54750.

8. Garg R, Gonuguntla S, Sk S, et al. Sputtering thin films: Materials, applications, challenges and future directions. Advances in Colloid and Interface Science. 2024; 103203.

9. Arab K, Jafari A, Shahi F. The role of graphene quantum dots in cutting-edge medical therapies. Polymers for Advanced Technologies. 2024; 35(9): e6571.

10. Mallick P. Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures. In: Materials, Design and Manufacturing for Lightweight Vehicles. Elsevier; 2021. pp. 187–228.

11. Costa AA, Martinho PG, Barreiros FM. Comparison between the mechanical recycling behaviour of amorphous and semicrystalline polymers: A case study. Recycling. 2023; 8(1): 12.

12. Shen G, Hu J, Chen C, et al. In-situ crystallization process monitoring of thermoplastic composites by dielectric sensing during laser-assisted automated fiber placement. Journal of Manufacturing Processes. 2024; 124(3): 479–488.

13. Pawlak A. Crystallization of Polymers with a Reduced Density of Entanglements. Crystals. 2024; 14(4): 385.

14. Ullah H, Khan RU, Silberschmidt VV. Assessing pseudo-ductile behavior of woven thermoplastic composites under tension and bending. Composites Science and Technology. 2024; 248(22): 110465.

15. Mohite AS, Rajpurkar YD, More AP. Bridging the gap between rubbers and plastics: A review on thermoplastic polyolefin elastomers. Polymer Bulletin. 2022; 79(2): 1309–1343.

16. Haider S, Khan Y, Almasry WA, et al. Thermoplastic nanocomposites and their processing techniques. In: Thermoplastic-Composite Materials. IntechOpen; 2012.

17. Demski S, Misiak M, Majchrowicz K, et al. Mechanical recycling of CFRPs based on thermoplastic acrylic resin with the addition of carbon nanotubes. Scientific Reports. 2024; 14(1): 11550.

18. Olam M. Mechanical and thermal properties of HDPE/PET microplastics, applications, and impact on environment and life. In: Advances and Challenges in Microplastics. IntechOpen; 2023.

19. Yan Y, Han M, Jiang Y, et al. Electrically Conductive Polymers for Additive Manufacturing. ACS Applied Materials & Interfaces. 2024; 16(5): 5337–5354.

20. Zotti A, Zuppolini S, Borriello A, et al. The Effect of Carbon-Based Nanofillers on Cryogenic Temperature Mechanical Properties of CFRPs. Polymers. 2024; 16(5): 638.

21. Wu B, Huang J, Yu Y, et al. In-depth investigation of how carbon nanofiller dispersion affects microcellular foaming behavior in poly (butylene succinate) nanocomposites. The Journal of Supercritical Fluids. 2024; 209: 106252.

22. Sarath KP, Jayanarayanan K, Balachandran M. High-performance thermoplastic polyaryletherketone/carbon fiber composites: Comparison of plasma, carbon nanotubes/graphene nano-anchoring, surface oxidation techniques for enhanced interface adhesion and properties. Composites Part B: Engineering. 2023; 253: 110560.

23. Guney Yilmaz S, Ferik E, Birak SB, et al. High-performance thermoplastic nanocomposites for aerospace applications: A review of synthesis, production, and analysis. Journal of Reinforced Plastics and Composites. 2024.

24. de Arquer FPG, Talapin DV, Klimov VI, et al. Semiconductor quantum dots: Technological progress and future challenges. Science. 2021; 373(6555).

25. Zhao F, Li X, Zuo M, et al. Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review. Journal of Environmental Chemical Engineering. 2023; 11(2): 109487. doi: 10.1016/j.jece.2023.109487

26. Amor AB, Hemmami H, Amor IB, et al. Advances in carbon quantum dot applications: Catalysis, sensing, and biomedical innovations. Materials Science in Semiconductor Processing. 2025; 185: 108945. doi: 10.1016/j.mssp.2024.108945

27. Mahto B, Mahanty B, Hait S, et al. A review of coal-based carbon and graphene quantum dots: Synthesis, properties, and applications. Materials Science and Engineering: B. 2024; 304: 117386. doi: 10.1016/j.mseb.2024.117386

28. Mahajan MR, Patil PO. Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: A review. Inorganic Chemistry Communications. 2022; 144: 109883. doi: 10.1016/j.inoche.2022.109883

29. Othman AM, Kher-Elden MA, Ibraheem F, et al. Analogous electronic states in graphene and planer metallic quantum dots. Scientific Reports. 2024; 14(1): 13471. doi: 10.1038/s41598-024-63465-2

30. Manjubaashini N, Thangadurai TD, Nataraj D, et al. Physicochemical Properties of Graphene Quantum Dots. In: Graphene Quantum Dots: The Emerging Luminescent Nanolights. Springer Nature Singapore; 2024. pp. 117–131.

31. Cui Y, Liu L, Shi M, et al. A Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application. C. 2024; 10(1): 7. doi: 10.3390/c10010007

32. Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: From chemistry and physics to applications. Advanced Materials. 2019; 31(21). doi: 10.1002/adma.201808283

33. Dananjaya V, Marimuthu S, Yang R, et al. Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites. Progress in Materials Science. 2024; 144: 101282. doi: 10.1016/j.pmatsci.2024.101282

34. Pandey M, Nazar R, Elella MHA, et al. A Comprehensive Review of Recent Developments in Biomedical Materials Based on Graphene-Modified Bio-Nanocomposites. BioNanoScience. 2024; 15(1): 125. doi: 10.1007/s12668-024-01757-7

35. Markandan K. Additive Manufacturing of Polymer Composites: Processing and Structural Design. Sustainable Structural Materials. 2025; 1–17. doi: 10.1201/9781003362227-1

36. Yang H, Gao S, Xu X, et al. Enhancing heat energy transfer at graphene/polypropylene interface. Applied Energy. 2025; 381: 125134. doi: 10.1016/j.apenergy.2024.125134

37. Liu L, Xu C, Yang Y, et al. Graphene-based polymer composites in thermal management: Materials, structures and applications. Materials Horizons. 2025; 12(1): 64–91. doi: 10.1039/d4mh00846d

38. Vandana M, Devendrappa H, Padova PD, et al. Polymer nanocomposite graphene quantum dots for high-efficiency ultraviolet photodetector. Nanomaterials. 2022; 12(18): 3175. doi: 10.3390/nano12183175

39. Prasittisopin L, Termkhajornkit P, Kim YH. Review of concrete with expanded polystyrene (EPS): Performance and environmental aspects. Journal of Cleaner Production. 2022; 366: 132919. doi: 10.1016/j.jclepro.2022.132919

40. Kelpsiene E, Ekvall MT, Lundqvist M, et al. Review of ecotoxicological studies of widely used polystyrene nanoparticles. Environmental Science: Processes & Impacts. 2022; 24(1): 8–16. doi: 10.1039/d1em00375e

41. Li R, Hu J, Li Y, et al. Graphene-Based, Flexible, Wearable Piezoresistive Sensors with High Sensitivity for Tiny Pressure Detection. Sensors. 2025; 25(2): 423. doi: 10.3390/s25020423

42. Krishnan MR, Alsharaeh EH. Facile fabrication of thermo-mechanically reinforced polystyrene-graphene nanocomposite aerogel for produced water treatment. Journal of Porous Materials. 2024; 31(4): 1363–1373. doi: 10.1007/s10934-024-01602-y

43. Ma R, Shen R, Quan Y, et al. Tunable flammability studies of graphene quantum dots-based polystyrene nanocomposites using microscale combustion calorimeter. Journal of Thermal Analysis and Calorimetry. 2022; 147(19): 10383–10390. doi: 10.1007/s10973-022-11277-9

44. Kong Y, Wang R, Zhou Q, et al. Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review. Journal of Contaminant Hydrology. 2025; 269: 104499. doi: 10.1016/j.jconhyd.2025.104499

45. Ronca S. Polyethylene. In: Brydson’s Plastics Materials. Elsevier; 2017. pp. 247–278.

46. Schwab ST, Baur M, Nelson TF, et al. Synthesis and Deconstruction of Polyethylene-type Materials. Chemical Reviews. 2024; 124(5): 2327–2351. doi: 10.1021/acs.chemrev.3c00587

47. Rezvani Ghomi E, Khosravi F, Mossayebi Z, et al. The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules. 2020; 25(21): 5157. doi: 10.3390/molecules25215157

48. Wang Y, Yang RC, Gover R, et al. Graphene Origami Amplifies Mechanical Properties of Polyethylene Nanocomposites. ACS Applied Materials & Interfaces. 2025; 17(2): 3829–3839. doi: 10.1021/acsami.4c14065

49. Yin S, Duvigneau J, Vancso GJ. Fluorescent polyethylene by in situ facile synthesis of carbon quantum dots facilitated by silica nanoparticle agglomerates. ACS Applied Polymer Materials. 2021; 3(11): 5517–5526. doi: 10.1021/acsapm.1c00821

50. Zeng Z, Li W, Li Y, et al. Lubrication behavior of fluorescent graphene quantum dots hybrid polyethylene glycol lubricant. Applied Surface Science. 2023; 612: 155933. doi: 10.1016/j.apsusc.2022.155933

51. Ao D, Fan X, Zeng Z, et al. Tribological properties of graphene quantum dot hybrid polyethylene glycol lubricated molybdenum disulfide films. Tribology International. 2024; 193: 109437. doi: 10.1016/j.triboint.2024.109437

52. Kim HJ, Lee CK, Seo JG, et al. Highly luminescent polyethylene glycol-passivated graphene quantum dots for light emitting diodes. RSC Advances. 2020; 10(46): 27418–27423. doi: 10.1039/d0ra02257h

53. Pourmadadi M, Tajiki A, Abdouss M, et al. Novel carbon quantum dots incorporated polyacrylic acid/polyethylene glycol pH-sensitive nanoplatform for drug delivery. Inorganic Chemistry Communications. 2024; 159: 111814. doi: 10.1016/j.inoche.2023.111814

54. Manap A, Mahalingam S, Rabeya R, et al. Effect of polyethylene glycol in graphene quantum dots for dye-sensitized solar cell. Polymer Bulletin. 2024; 81(12): 10885–10896. doi: 10.1007/s00289-024-05222-z

55. Shehata N, Nair R, Boualayan R, et al. Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. Scientific Reports. 2022; 12(1): 8335. doi: 10.1038/s41598-022-11465-5

56. Adaval A, Chinya I, Bhatt BB, et al. Poly (vinylidene fluoride)/graphene oxide nanocomposites for piezoelectric applications: Processing, structure, dielectric and ferroelectric properties. Nano-Structures & Nano-Objects. 2022; 31: 100899. doi: 10.1016/j.nanoso.2022.100899

57. Xie B, Guo Y, Chen Y, et al. Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Letters. 2025; 17(1): 17. doi: 10.1007/s40820-024-01530-1

58. Pusty M, Shirage PM. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. Journal of Alloys and Compounds. 2022; 904: 164060. doi: 10.1016/j.jallcom.2022.164060

59. Rodrigues-Marinho T, Tubio CR, Lanceros-Mendez S, et al. Tailoring the electrical response of polyvinylidene fluoride nanocomposites with electrically conductive and dielectric fillers. Advanced Engineering Materials. 2024; 26(1). doi: 10.1002/adem.202301596

60. Zhao Y, Wang B, Zeng S, et al. β-phase formation of poly(vinylidene fluoride) foam based on the porous morphology control via supercritical carbon dioxide. Sustainable Materials and Technologies. 2024; 40: e00987. doi: 10.1016/j.susmat.2024.e00987

61. Cho S, Lee JS, Jang J. Poly(vinylidene fluoride)/NH2-treated graphene nanodot/reduced graphene oxide nanocomposites with enhanced dielectric performance for ultrahigh energy density capacitor. ACS Applied Materials & Interfaces. 2015; 7(18): 9668–9681. doi: 10.1021/acsami.5b01430

62. Tay WY, Ng LY, Ng CY, et al. Incorporation of Silver-Doped Graphene Oxide Quantum Dots in Polyvinylidene Fluoride Membrane for Verapamil Removal. Sustainability. 2022; 14(23): 15843. doi: 10.3390/su142315843

63. Zhang F, Yang C, Wang XX, et al. Graphene quantum dots doped PVDF(TBT)/PVP(TBT) fiber film with enhanced photocatalytic performance. Applied Sciences. 2020; 10(2): 596. doi: 10.3390/app10020596

64. Ibrahim MA, Nasr GM, Ahmed RM, et al. Physical characterization, biocompatibility, and antimicrobial activity of polyvinyl alcohol/sodium alginate blend doped with TiO2 nanoparticles for wound dressing applications. Scientific Reports. 2024; 14(1): 5391. doi: 10.1038/s41598-024-55818-8

65. Kamanina N, Fedorova L, Likhomanova S, et al. Impact of Carbon-Based Nanoparticles on Polyvinyl Alcohol Polarizer Features: Photonics Applications. Nanomaterials. 2024; 14(9): 737. doi: 10.3390/nano14090737

66. Abral H, Atmajaya A, Mahardika M, et al. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. Journal of Materials Research and Technology. 2020; 9(2): 2477–2486. doi: 10.1016/j.jmrt.2019.12.078

67. Sun Q, Zhang L, Huang M, et al. Modification of starch-derived graphene quantum dots as multifunctional nanofillers to produce polymer starch/polyvinyl alcohol composite films for active packaging. LWT. 2024; 198: 115953. doi: 10.1016/j.lwt.2024.115953

68. Arya T, Bohra BS, Tewari C, et al. Influence of bio-resource-derived graphene oxide on the mechanical and thermal properties of poly(vinyl alcohol) nanocomposites. Polymer Composites. 2024; 45(1): 695–708. doi: 10.1002/pc.27808

69. Gunes BA, Kirlangic OF, Kilic M, et al. Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells. ACS Omega. 2024; 9(11): 13342–13358. doi: 10.1021/acsomega.3c10324

70. Park SW, Im SH, Hong WT, et al. Lignin-derived carbon quantum dot/PVA films for totally blocking UV and high-energy blue light. International Journal of Biological Macromolecules. 2024; 268: 131919. doi: 10.1016/j.ijbiomac.2024.131919

71. Kharangarh PR, Ravindra NM, Singh G, Umapathy S. Synthesis of luminescent graphene quantum dots from biomass waste materials for energy-related applications—An overview. Energy Storage. 2022; 5(3). doi: 10.1002/est2.390

72. Sharma VD, Kansay V, Chandan G, et al. Down-conversion luminescence nanocomposites based on nitrogen-doped carbon quantum dots@ bioplastic for applications in optical displays, LEDs and UVC tubes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2024; 312: 124065. doi: 10.1016/j.saa.2024.124065

73. Fauzi NIM, Fen YW, Eddin FBK, et al. Structural and Optical Properties of Graphene Quantum Dots−Polyvinyl Alcohol Composite Thin Film and Its Potential in Plasmonic Sensing of Carbaryl. Nanomaterials. 2022; 12(22): 4105. doi: 10.3390/nano12224105

74. Ogi T, Iwasaki H, Aishima K, et al. Transient nature of graphene quantum dot formation via a hydrothermal reaction. RSC Adv. 2014; 4(99): 55709–55715. doi: 10.1039/c4ra09159k

75. Elumalai D, Rodríguez B, Kovtun G, et al. Nanostructural Characterization of Luminescent Polyvinyl Alcohol/Graphene Quantum Dots Nanocomposite Films. Nanomaterials. 2023; 14(1): 5. doi: 10.3390/nano14010005

76. Sangabathula O, Kandasamy M, Chakraborty B, et al. Experimental and theoretical insights into colossal supercapacitive performance of graphene quantum dots incorporated Ni3S2/CoS2/MoS2 electrode. Journal of Energy Storage. 2023; 65: 107274. doi: 10.1016/j.est.2023.107274

77. Saleem Y, Sadecka K, Korkusinski M, et al. Theory of Excitons in Gated Bilayer Graphene Quantum Dots. Nano Letters. 2023; 23(7): 2998–3004. doi: 10.1021/acs.nanolett.3c00406

78. Rani P, Dalal R, Srivastava S. Effect of surface modification on optical and electronic properties of graphene quantum dots. Applied Surface Science. 2023; 609: 155379. doi: 10.1016/j.apsusc.2022.155379

79. Dehghani-Dashtabi M, Hekmatara H. Structural, electrical and EMI shielding property of carbon nanotube decorated magnetic/ceramic nanoparticles. Scientific Reports. 2025; 15(1): 1311. doi: 10.1038/s41598-025-85378-4

80. Banerjee S, Sharma R, Kar KK. Nanocomposites Based on Carbon Nanomaterials and Electronically Nonconducting Polymers. In: Composite Materials. Springer; 2017. pp. 251–280.

81. Tofighy MA, Mohammadi T. Barrier, Diffusion, and Transport Properties of Rubber Nanocomposites Containing Carbon Nanofillers. In: Carbon-Based Nanofillers and Their Rubber Nanocomposites. Elsevier; 2019. pp. 253–285.

82. Nagornaya MN, Razdyakonova GI, Khodakova SY. The effect of functional groups of carbon black on rubber properties. Procedia Engineering. 2016; 152: 563–569. doi: 10.1016/j.proeng.2016.07.656

83. Modak P, Kondawar SB, Nandanwar DV. Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Materials Science. 2015; 10: 588–594. doi: 10.1016/j.mspro.2015.06.010

84. Jalali A, Rajabi-Abhari A, Zhang H, et al. Cultivation of In situ foam 3D-printing: Lightweight and flexible triboelectric nanogenerators employing polyvinylidene fluoride/graphene nanocomposite foams with superior EMI shielding and thermal conductivity. Nano Energy. 2025; 134: 110554. doi: 10.1016/j.nanoen.2024.110554

85. Carvalho AS, Santos AR, Cabral DCO, et al. Binder-free ultrathin pellets of nanocomposites based on Fe3O4@nitrogen-doped reduced graphene oxide aerogel for electromagnetic interference shielding. Journal of Alloys and Compounds. 2024; 978: 173329. doi: 10.1016/j.jallcom.2023.173329

86. Jiang D, Murugadoss V, Wang Y, et al. Electromagnetic Interference Shielding Polymers and Nanocomposites—A Review. Polymer Reviews. 2019; 59(2): 280–337. doi: 10.1080/15583724.2018.1546737

87. Lakshmi NV, Tambe P. EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Composite Interfaces. 2017; 24(9): 861–882. doi: 10.1080/09276440.2017.1302202

88. Barati F, Avatefi M, Moghadam NB, et al. A review of graphene quantum dots and their potential biomedical applications. Journal of Biomaterials Applications. 2022; 37(7): 1137–1158. doi: 10.1177/08853282221125311

89. Chaudhary M, Xin C, Hu Z, et al. Nitrogen-Doped Carbon Quantum Dots on Graphene for Field-Effect Transistor Optoelectronic Memories. Advanced Electronic Materials. 2023; 9(8). doi: 10.1002/aelm.202300159

90. Kou L, Li F, Chen W, et al. Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory. Organic Electronics. 2013; 14(6): 1447–1451. doi: 10.1016/j.orgel.2013.03.016

91. Bai J, Ren W, Wang Y, et al. High-performance thermoplastic polyurethane elastomer/carbon dots bulk nanocomposites with strong luminescence. High Performance Polymers. 2020; 32(7): 857–867. doi: 10.1177/0954008320907123

92. Liu C, Wen M, Mai S, et al. Harnessing nitrogen-doped graphene quantum dots for enhancing the fluorescence and conductivity of the starch-based film. Carbohydrate Polymers. 2023; 303: 120475. doi: 10.1016/j.carbpol.2022.120475

93. Chen J, Long Z, Wang S, et al. Biodegradable blends of graphene quantum dots and thermoplastic starch with solid-state photoluminescent and conductive properties. International Journal of Biological Macromolecules. 2019; 139: 367–376. doi: 10.1016/j.ijbiomac.2019.07.211

94. Xu S, Zhang S, Zhao H, et al. Electrostatic Attraction-Driven Interaction between TiO2 and Colloidal Carbon Quantum Dots for Enhanced Visible Light Photocatalytic Degradation of Tetracycline and Antibacterial Activity Analysis. Catalysis Letters. 2025; 155(3): 1–14. doi: 10.1007/s10562-025-04939-4

95. Mafukidze DM, Nyokong T. Graphene quantum dot-phthalocyanine polystyrene conjugate embedded in asymmetric polymer membranes for photocatalytic oxidation of 4-chlorophenol. Journal of Coordination Chemistry. 2017; 70(21): 3598–3618. doi: 10.1080/00958972.2017.1400664

96. Apostolaki MA, Toumazatou A, Antoniadou M, et al. Graphene Quantum Dot-TiO2 Photonic Crystal Films for Photocatalytic Applications. Nanomaterials. 2020; 10(12): 2566. doi: 10.3390/nano10122566

97. Soman S, Aswathy PV, Kala R. Covalently modified graphene quantum dot using a thiourea based imprinted polymer for the selective electrochemical sensing of Hg(Ⅱ) ions. Journal of Polymer Research. 2021; 28(9): 359. doi: 10.1007/s10965-021-02716-6

98. Nesakumar N, Srinivasan S, Alwarappan S. Graphene quantum dots: Synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Microchimica Acta. 2022; 189(7): 258. doi: 10.1007/s00604-022-05353-y

99. Zheng P, Wu N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: A review. Chemistry—An Asian Journal. 2017; 12(18): 2343–2353. doi: 10.1002/asia.201700814

100. Masteri-Farahani M, Mashhadi-Ramezani S, Mosleh N. Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020; 229: 118021. doi: 10.1016/j.saa.2019.118021

101. Lin J, Huang Y, Huang P. Graphene-based nanomaterials in bioimaging. Biomedical Applications of Functionalized Nanomaterials. 2018; 247–287. doi: 10.1016/b978-0-323-50878-0.00009-4

102. Bae G, Cho H, Hong BH. A Review On Synthesis, Properties, And Biomedical Applications Of Graphene Quantum Dots (GQDs). Nanotechnology. 2024; 35(37): 372001. doi: 10.1088/1361-6528/ad55d0

103. Khan A, Ezati P, Kim JT, Rhim JW. Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability. Materials Today Sustainability. 2023; 21: 100306. doi: 10.1016/j.mtsust.2022.100306

104. Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Frontiers in Bioengineering and Biotechnology. 2024; 11. doi: 10.3389/fbioe.2023.1333752

105. Vibhute A, Patil T, Pandey-Tiwari A. Bio-Conjugated Carbon Quantum Dots for Intracellular Uptake and Bioimaging Applications. Journal of Fluorescence. 2025; 1–11. doi: 10.1007/s10895-024-04103-y

106. Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications. 2011; 47(24): 6858. doi: 10.1039/c1cc11122a

107. Nurunnabi M, Khatun Z, Nafiujjaman M, et al. Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Applied Materials & Interfaces. 2013; 5(16): 8246–8253. doi: 10.1021/am4023863

108. Valimukhametova AR, Zub OS, Lee BH, et al. Dual-mode fluorescence/ultrasound imaging with biocompatible metal-doped graphene quantum dots. ACS Biomaterials Science & Engineering. 2022; 8(11): 4965–4975. doi: 10.1021/acsbiomaterials.2c00794

109. Mousavi SM, Hashemi SA, Kalashgrani MY, et al. Bioactive graphene quantum dots based polymer composite for biomedical applications. Polymers. 2022; 14(3): 617. doi: 10.3390/polym14030617

110. Dar MS, Sahu NK. Graphene quantum dot-crafted nanocomposites: Shaping the future landscape of biomedical advances. Discover Nano. 2024; 19(1): 1–27. doi: 10.1186/s11671-024-04028-2

111. Fathima APK, Tharani GR, Sundaramoorthy A, et al. An ultra-sensitive detection of Melamine in milk using Rare-earth doped Graphene Quantum Dots- Synthesis and Optical Spectroscopic approach. Microchemical Journal. 2024; 196: 109670. doi: 10.1016/j.microc.2023.109670

112. Sheng L, Huangfu B, Xu Q, et al. A highly selective and sensitive fluorescent probe for detecting Cr(VI) and cell imaging based on nitrogen-doped graphene quantum dots. Journal of Alloys and Compounds. 2020; 820: 153191. doi: 10.1016/j.jallcom.2019.153191

113. Gil HM, Price TW, Chelani K, et al. NIR-quantum dots in biomedical imaging and their future. iScience. 2021; 24(3): 102189. doi: 10.1016/j.isci.2021.102189

114. Anand A, Unnikrishnan B, Wei SC, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—a minireview. Nanoscale Horizons. 2019; 4(1): 117–137. doi: 10.1039/c8nh00174j

115. Rajendiran K, Zhao Z, Pei DS, et al. Antimicrobial activity and mechanism of functionalized quantum dots. Polymers. 2019; 11(10): 1670. doi: 10.3390/polym11101670

116. Liu J, Shao J, Wang Y, et al. Antimicrobial activity of zinc oxide–graphene quantum dot nanocomposites: Enhanced adsorption on bacterial cells by cationic capping polymers. ACS Sustainable Chemistry & Engineering. 2019; 7(19): 16264–16273. doi: 10.1021/acssuschemeng.9b03292




DOI: https://doi.org/10.24294/can11484

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.