Functionalization of graphene by intercalation: A theoretical insight

Vittoria Urso

Article ID: 10326
Vol 8, Issue 2, 2025


Abstract


The intercalation of alkali metals in graphene monolayers and bilayers has been studied using first-principles calculations in particular density functional theory. Alkali metals intercalate into graphite, leading to the formation of M-graphene layered materials (with M = Li, Na, K, Rb, and Cs). Intercalated species can modify the very electronic structure of graphene and consequently its electron mobility. Thanks to various experimental studies, it has been
possible to demonstrate that alkali metal intercalation can be used to modify the electronic structure close to the Fermi level of the M-graphene materials and manipulate the carrier mobility and therefore we want to do this also with computational studies. These materials have a wide variety of applications, especially for the development of new batteries and other devices. The first principles are discussed on the effects of the intercalation of a heavy-alkali metal (K) on the electronic structure of graphene monolayers and bilayers.

Keywords


graphene; alkali metals; intercalation; Dirac cone shift

Full Text:

PDF


References


1.

1.       Ahmad S, Mir´o P, Audiffred M, Heine T. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation. Solid State Communications. 2018; 272: 22–27.

2.

2.       Lenchuk O, Adelhelm P, Mollenhauer D. Comparative study of density functionals for the description of lithium-graphite intercalation compounds. Journal of Computational Chemistry. 2019; 40(27): 2400–2412.

3.

3.       Jishi RA, Guzman DM, Alyahyaei HM. Theoretical investigation of two-dimensional superconductivity in intercalated graphene layers. Advanced Studies in Theoretical Physics. 2011; 5(15): 703–716.

4.

4.       Dresselhaus MS, Dresselhaus G, Fischer JE. Graphite intercalation compounds: Electronic properties in the dilute limit. Physical Review B. 1977; 15(6): 3180.

5.

5.       Peralta M, Vaca-Chanatasig C, Vera-Nieto R, Verrilli D. Transport properties of graphene in proximity with alkali metals. Journal of Physics: Conference Series. 2022; 2238(1): 012003.

6.

6.       Guo B, Fang L, Zhang B, Gong JR. Graphene doping: A review. Insciences Journal. 2011; 1: 80–89.

7.

7.       Ahmed AB, Said M, Kirfi MM. Dft calculation for adatom adsorption on graphene monolayer using quantum espresso code. Bayero Journal of Pure and Applied Sciences. 2022; 13(1): 471–477.

8.

8.       Li X, Li J, Ma L, et al.. Graphite anode for potassium ion batteries: Current status and perspective. Energy & Environmental Materials. 2022; 5(2): 458–469.

9.

9.       Yang J, Yuan Y, Chen G. First–principles study of potassium adsorption and diffusion on graphene. Molecular Physics. 2019; 118(1): e1581291.

10.

10.   Plunkett GR. Electrical transport measurements show intrinsic doping and hysteresis in graphene pn junction devices [Bachelor’s thesis]. Oregon State University; 2017.

11.

11.   Yan H. Bilayer graphene: Physics and application outlook in photonics. Nanophotonics. 2015; 4(1): 115–127.

12.

12.   Sernelius BE. Casimir effects in systems containing 2D layers such as graphene and 2D electron gases. Journal of Physics: Condensed Matter. 2015; 27(21): 214017.

13.

13.   Fathi D. A review of electronic band structure of graphene and carbon nanotubes using tight binding. Journal of Nanotechnology. 2011; 2011: 1–6.

14.

14.   Zhang T, Xue Q, Zhang S, and Dong M. Theoretical approaches to graphene and graphene-based materials. Nano Today. 2012; 7(3): 180–200.

15.

15.   Gusynin VP, Sharapov SG. Transport of Dirac quasiparticles in graphene: Hall and optical conductivities. Physical Review B. 2006; 73(24).

16.

16.   Oli BD, Bhattarai C, Nepal B, Adhikari NP. First-principles study of adsorption of alkali metals (Li, Na, K) on graphene. In: Giri PK, Goswami DK, Perumal A (editors). Advanced Nanomaterials and Nanotechnology. Springer; 2013. pp. 515–529.

17.

17.   Antonio H. Neto C. The carbon new age. Materials Today. 2010; 13(3): 12–17.

18.

18.   Bonzel HP, Bradshaw AM, Ertl G. Physics and Chemistry of Alkali Metal Adsorption. Elsevier; 1989.

19.

19.   Bennich P, Puglia C, Br¨uhwiler PA, et al. Photoemission study of K on graphite. Physical Review B. 1999; 59(12): 8292–8304.

20.

20.   Onuma H, Kubota K, Muratsubaki S, et al. Phase evolution of electrochemically potassium intercalated graphite. Journal of Materials Chemistry A. 2021; 9(18): 11187–11200.

21.

21.   Olsson E, Chai G, Dove M, Cai Q. Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale. 2019; 11(12): 5274–5284.

22.

22.   Gr¨uneis A, Attaccalite C, Rubio A, et al. Electronic structure and electron-phonon coupling of doped graphene layers in KC8. Physical Review B. 2009; 79(20): 205106.

23.

23.   Sonia FJ, Jangid MK, Aslam M, et al. Enhanced and faster potassium storage in graphene with respect to graphite: A comparative study with lithium storage. ACS Nano. 2019; 13(2): 2190–2204.

24.

24.   Ziambaras E, Kleis J, Schr¨oder E, Hyldgaard P. Potassium intercalation in graphite: A van der waals density-functional study. Physical Review B. 2007; 76(15): 155425.

25.

25.   Caragiu M, Finberg S. Alkali metal adsorption on graphite: A review. Journal of Physics: Condensed Matter. 2005; 17(35): R995.

26.

26.   Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Reviews of Modern Physics. 2009; 81(1): 109–162.

27.

27.   Novoselov KS, Geim AK, Morozov S, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005; 438: 197–200.

28.

28.   Wang J, Deng S, Liu Z, Liu Z. The rare two-dimensional materials with dirac cones. National Science Review. 2015; 2(1): 22–39.

29.

29.   Bandyopadhyay A, Jana D. Dirac materials in a matrix way. Universal Journal of Materials Science. 2020; 8(2): 32–44.

30.

30.   Wehling TO, Black-Schaffer AM, Balatsky AV. Dirac materials. Advances in Physics. 2014; 63(1): 1–76.

31.

31.   Yun HJ, Park S. Newly written physics in graphene. New Physics: Sae Mulli. 2012; 62(12): 1229.

32.

32.   Scandolo S, Giannozzi P, Cavazzoni C, et al. First-principles codes for computational crystallography in the quantum-espresso package. Zeitschrift f¨ur Kristallographie-Crystalline Materials. 2005; 220(5–6): 574–579.

33.

33.   Wei Z, Guo D, Hou Y, et al. Progress on the graphene-involved catalytic hydrogenation reactions. Journal of the Taiwan Institute of Chemical Engineers. 2016; 67: 126–139.

34.

34.   Chan KT, Neaton JB, Cohen ML. First-principles study of metal adatom adsorption on graphene. Physical Review B. 2008; 77(23): 235430.

35.

35.   Mir SH, Yadav VK, Singh JK. Recent advances in the carrier mobility of two-dimensional materials: A theoretical perspective. ACS Omega. 2020; 5(24): 14203–14211.

36.

36.   Zhao J, Ji P, Li Y, et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature. 2024; 625: 60–65.

37.

37.   Yang S, Chen Y, Jiang C. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat. 2021; 3(4): 397–420.

38.

38.   Lee HY, Haidari MM, Kee EH, et al. Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation. Nanomaterials. 2022; 12(16): 2845.

39.

39.   Tahani M, Shohany BG, Motevalizadeh L. Study of structural, electronic, and mechanical properties of pure and hydrogenated multilayer penta-graphene nano-plates using density functional theory. Materials Today Communications. 2021; 28: 102608.

40.

40.   Silva DHS. Band gap opening in Bernal bilayer graphene under applied electric field calculated by DFT. Physica B: Condensed Matter. 2024; 694: 416398.

41.

41.   Zhang S, Chuang HJ, Le ST, et al. Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping. AIP Advances. 2022; 12(8).

42.

42.   Natarajan V, Naveen Kumar P, Ahmad M, et al. Effect of electron-phonon interaction and valence band edge shift for carrier-type reversal in layered ZnS/rGO nanocomposites. Journal of Colloid and Interface Science. 2021; 586: 39–46.

43.

43.   Lu X, Guo H, Lei Z, et al. Study of High-Energy Proton Irradiation Effects in Top-Gate Graphene Field-Effect Transistors. Electronics. 2023; 12(23): 4837.

44.

44.   Marchiani D, Tonelli A, Mariani C, et al. Tuning the electronic response of metallic graphene by potassium doping. Nano Letters. 2022; 23(10).

45.

45.   Golze D, Dvorak M, Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Frontiers in Chemistry. 2019; 7: 377.

46.

46.   Struzzi C, Praveen CS, Scardamaglia M, et al. Controlled thermodynamics for tunable electron doping of graphene on Ir(111). Physical Review B. 2016; 94(8).

47.

47.   Lu H, Guo Y, Robertson J. Charge transfer doping of graphene without degrading carrier mobility. Journal of Applied Physics. 2017; 121(22).

48.

48.   Kihlgren T, Balasubramanian T, Walld´en L, Yakimova R. K/graphite: Uniform energy shifts of graphite valence states. Surface Science. 2006; 600(5): 1160–1164.

49.

49.   Wang Z, Ratvik AP, Grande T, Sverre M. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations. RSC Advances. 2015; 5(21): 15985–15992.

50.

50.   Bostwick A, Speck F, Seyller T, et al. Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Science. 2010; 328(5981): 999–1002.

51.

51.   Matsui F, Eguchi R, Nishiyama S, et al. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface. Scientific Reports. 2016; 6(1): 1–10.

52.

52.   Preil ME, Fischer JE. X-Ray Photoelectron Study of the Valence Band of KC8: Direct Experimental Proof of CompleteK(4s)Charge Transfer. Physical Review Letters. 1984; 52(13): 1141–1144.

53.

53.   Mir SH, Yadav VK, Singh JK. Recent Advances in the Carrier Mobility of Two-Dimensional Materials: A Theoretical Perspective. ACS Omega. 2020; 5(24): 14203–14211.

54.

54.   Marzari N, Ferretti A, Wolverton C. Electronic-structure methods for materials design. Nature Materials. 2021; 20(6): 736–749.

55.

55.   Oelhafen P, Pfluger P, Hauser E, G¨untherodt HJ. Evidence for an alkali-like conduction band in alkali graphite intercalation compounds. Solid State Communications. 1980; 33(2): 241–244.

56.

56.   Sun LF, Dong LM, Wu ZF, Fang C. A comparison of the transport properties of bilayer graphene, monolayer graphene, and two-dimensional electron gas. Chinese Physics B. 2013; 22(7): 077201.

57.

57.   Shokuhifard R, Fuladvand H. Fundamental differences between mono-and bi-layer graphene. International Journal of Science and Applied Science Conference Series 3(Fundamental Differences between Mono- and Bi-layer Graphene). 2010; 78–83.

58.

58.   Jacak J, Jacak L. Difference in hierarchy of fqhe between monolayer and bilayer graphene. Physics Letters A. 2015; 379(36): 2130–2134.

59.

59.   Chepkasov IV, Ghorbani-Asl M, Popov ZI, et al. Alkali metals inside bi-layer graphene and mos2: Insights from first-principles calculations. Nano Energy. 2020; 75: 104927.

60.

60.   Ma J, Yang C, Ma X, et al. Improvement of alkali metal ion batteries via interlayer engineering of anodes: from graphite to graphene. Nanoscale, 2021; 13(29): 12521–12533.

61.

61.   Chepkasov IV, Smet JH, Krasheninnikov AV. Single-and multilayers of alkali metal atoms inside graphene/mos2 heterostructures: A systematic first-principles study. The Journal of Physical Chemistry C. 2022; 126(37): 15558–15564.

62.

62.   Wang X, Zhang W, Ni K, et al. Alkali metals induced stacking phase transition of graphite. Carbon. 2023; 213: 118295.

63.

63.   Zinni J, Camerano L, Speyer L, et al. Charge transfer in alkaline-earth metal graphite intercalation compounds. Carbon. 2024; 230: 119652.

64.

64.   Zhou J, Lin Z, Ren H, et al. Layered intercalation materials. Advanced Materials. 2021; 33(25): 2004557.

65.

65.   Zhang Y, Zhang L, Lv T, et al. Two-dimensional transition metal chalcogenides for alkali metal ions storage. ChemSusChem. 2020; 13(6): 1114–1154.

66.

66.   Vashishth S, Eswaramoorthy M. Investigation of heteroatom doped graphene anode for high-capacity alkali metal-ion batteries. Electrochemical Society Meeting Abstracts. 2023; 244(4): 518–518.

67.

67.   Lin Y, Matsumoto R, Liu Q, et al. Alkali metal bilayer intercalation in graphene. Nature communications. 2024; 15(1): 425.

68.

68.   Yadav A, Kobayashi H, Yamamoto T, Nohira T. Electrochemical rubidium storage behavior of graphite in ionic liquid electrolyte. Electrochemistry. 2023; 91(1).

69.

69.   Wu X, Zheng F, Kang F, Li J. Effects of lithium intercalation in bilayer graphene. Physical Review B. 2023; 107(16).

70.

70.   Gogina AA, Tarasov AV, Eryzhenkov AV, et al. Adsorption of na monolayer on graphene covered pt(111) substrate. JETP Letters. 2023; 117(2): 138–146.

71.

71.   Lu B, Ru N, Duan J, et al. In-plane porous graphene: A promising anode material with high ion mobility and energy storage for rubidium-ion batteries. ACS Omega. 2023; 8(24): 21842–21852.

72.

72.   Yadav A, Kobayashi H, Yamamoto T, Nohira T. Electrochemical intercalation of cesium into graphite in ionic liquid electrolyte. Electrochemistry. 2024; 92(4).

73.

73.   Li S, Dong R, Li Y, et al. Advances in free-standing electrodes for sodium ion batteries. Materials Today. 2024; 72: 207–234.




DOI: https://doi.org/10.24294/can10326

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.