Functionalization of graphene by intercalation: A theoretical insight
Vol 8, Issue 2, 2025
Abstract
possible to demonstrate that alkali metal intercalation can be used to modify the electronic structure close to the Fermi level of the M-graphene materials and manipulate the carrier mobility and therefore we want to do this also with computational studies. These materials have a wide variety of applications, especially for the development of new batteries and other devices. The first principles are discussed on the effects of the intercalation of a heavy-alkali metal (K) on the electronic structure of graphene monolayers and bilayers.
Keywords
Full Text:
PDFReferences
1.
1. Ahmad S, Mir´o P, Audiffred M, Heine T. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation. Solid State Communications. 2018; 272: 22–27.
2.
2. Lenchuk O, Adelhelm P, Mollenhauer D. Comparative study of density functionals for the description of lithium-graphite intercalation compounds. Journal of Computational Chemistry. 2019; 40(27): 2400–2412.
3.
3. Jishi RA, Guzman DM, Alyahyaei HM. Theoretical investigation of two-dimensional superconductivity in intercalated graphene layers. Advanced Studies in Theoretical Physics. 2011; 5(15): 703–716.
4.
4. Dresselhaus MS, Dresselhaus G, Fischer JE. Graphite intercalation compounds: Electronic properties in the dilute limit. Physical Review B. 1977; 15(6): 3180.
5.
5. Peralta M, Vaca-Chanatasig C, Vera-Nieto R, Verrilli D. Transport properties of graphene in proximity with alkali metals. Journal of Physics: Conference Series. 2022; 2238(1): 012003.
6.
6. Guo B, Fang L, Zhang B, Gong JR. Graphene doping: A review. Insciences Journal. 2011; 1: 80–89.
7.
7. Ahmed AB, Said M, Kirfi MM. Dft calculation for adatom adsorption on graphene monolayer using quantum espresso code. Bayero Journal of Pure and Applied Sciences. 2022; 13(1): 471–477.
8.
8. Li X, Li J, Ma L, et al.. Graphite anode for potassium ion batteries: Current status and perspective. Energy & Environmental Materials. 2022; 5(2): 458–469.
9.
9. Yang J, Yuan Y, Chen G. First–principles study of potassium adsorption and diffusion on graphene. Molecular Physics. 2019; 118(1): e1581291.
10.
10. Plunkett GR. Electrical transport measurements show intrinsic doping and hysteresis in graphene pn junction devices [Bachelor’s thesis]. Oregon State University; 2017.
11.
11. Yan H. Bilayer graphene: Physics and application outlook in photonics. Nanophotonics. 2015; 4(1): 115–127.
12.
12. Sernelius BE. Casimir effects in systems containing 2D layers such as graphene and 2D electron gases. Journal of Physics: Condensed Matter. 2015; 27(21): 214017.
13.
13. Fathi D. A review of electronic band structure of graphene and carbon nanotubes using tight binding. Journal of Nanotechnology. 2011; 2011: 1–6.
14.
14. Zhang T, Xue Q, Zhang S, and Dong M. Theoretical approaches to graphene and graphene-based materials. Nano Today. 2012; 7(3): 180–200.
15.
15. Gusynin VP, Sharapov SG. Transport of Dirac quasiparticles in graphene: Hall and optical conductivities. Physical Review B. 2006; 73(24).
16.
16. Oli BD, Bhattarai C, Nepal B, Adhikari NP. First-principles study of adsorption of alkali metals (Li, Na, K) on graphene. In: Giri PK, Goswami DK, Perumal A (editors). Advanced Nanomaterials and Nanotechnology. Springer; 2013. pp. 515–529.
17.
17. Antonio H. Neto C. The carbon new age. Materials Today. 2010; 13(3): 12–17.
18.
18. Bonzel HP, Bradshaw AM, Ertl G. Physics and Chemistry of Alkali Metal Adsorption. Elsevier; 1989.
19.
19. Bennich P, Puglia C, Br¨uhwiler PA, et al. Photoemission study of K on graphite. Physical Review B. 1999; 59(12): 8292–8304.
20.
20. Onuma H, Kubota K, Muratsubaki S, et al. Phase evolution of electrochemically potassium intercalated graphite. Journal of Materials Chemistry A. 2021; 9(18): 11187–11200.
21.
21. Olsson E, Chai G, Dove M, Cai Q. Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale. 2019; 11(12): 5274–5284.
22.
22. Gr¨uneis A, Attaccalite C, Rubio A, et al. Electronic structure and electron-phonon coupling of doped graphene layers in KC8. Physical Review B. 2009; 79(20): 205106.
23.
23. Sonia FJ, Jangid MK, Aslam M, et al. Enhanced and faster potassium storage in graphene with respect to graphite: A comparative study with lithium storage. ACS Nano. 2019; 13(2): 2190–2204.
24.
24. Ziambaras E, Kleis J, Schr¨oder E, Hyldgaard P. Potassium intercalation in graphite: A van der waals density-functional study. Physical Review B. 2007; 76(15): 155425.
25.
25. Caragiu M, Finberg S. Alkali metal adsorption on graphite: A review. Journal of Physics: Condensed Matter. 2005; 17(35): R995.
26.
26. Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Reviews of Modern Physics. 2009; 81(1): 109–162.
27.
27. Novoselov KS, Geim AK, Morozov S, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005; 438: 197–200.
28.
28. Wang J, Deng S, Liu Z, Liu Z. The rare two-dimensional materials with dirac cones. National Science Review. 2015; 2(1): 22–39.
29.
29. Bandyopadhyay A, Jana D. Dirac materials in a matrix way. Universal Journal of Materials Science. 2020; 8(2): 32–44.
30.
30. Wehling TO, Black-Schaffer AM, Balatsky AV. Dirac materials. Advances in Physics. 2014; 63(1): 1–76.
31.
31. Yun HJ, Park S. Newly written physics in graphene. New Physics: Sae Mulli. 2012; 62(12): 1229.
32.
32. Scandolo S, Giannozzi P, Cavazzoni C, et al. First-principles codes for computational crystallography in the quantum-espresso package. Zeitschrift f¨ur Kristallographie-Crystalline Materials. 2005; 220(5–6): 574–579.
33.
33. Wei Z, Guo D, Hou Y, et al. Progress on the graphene-involved catalytic hydrogenation reactions. Journal of the Taiwan Institute of Chemical Engineers. 2016; 67: 126–139.
34.
34. Chan KT, Neaton JB, Cohen ML. First-principles study of metal adatom adsorption on graphene. Physical Review B. 2008; 77(23): 235430.
35.
35. Mir SH, Yadav VK, Singh JK. Recent advances in the carrier mobility of two-dimensional materials: A theoretical perspective. ACS Omega. 2020; 5(24): 14203–14211.
36.
36. Zhao J, Ji P, Li Y, et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature. 2024; 625: 60–65.
37.
37. Yang S, Chen Y, Jiang C. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat. 2021; 3(4): 397–420.
38.
38. Lee HY, Haidari MM, Kee EH, et al. Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation. Nanomaterials. 2022; 12(16): 2845.
39.
39. Tahani M, Shohany BG, Motevalizadeh L. Study of structural, electronic, and mechanical properties of pure and hydrogenated multilayer penta-graphene nano-plates using density functional theory. Materials Today Communications. 2021; 28: 102608.
40.
40. Silva DHS. Band gap opening in Bernal bilayer graphene under applied electric field calculated by DFT. Physica B: Condensed Matter. 2024; 694: 416398.
41.
41. Zhang S, Chuang HJ, Le ST, et al. Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping. AIP Advances. 2022; 12(8).
42.
42. Natarajan V, Naveen Kumar P, Ahmad M, et al. Effect of electron-phonon interaction and valence band edge shift for carrier-type reversal in layered ZnS/rGO nanocomposites. Journal of Colloid and Interface Science. 2021; 586: 39–46.
43.
43. Lu X, Guo H, Lei Z, et al. Study of High-Energy Proton Irradiation Effects in Top-Gate Graphene Field-Effect Transistors. Electronics. 2023; 12(23): 4837.
44.
44. Marchiani D, Tonelli A, Mariani C, et al. Tuning the electronic response of metallic graphene by potassium doping. Nano Letters. 2022; 23(10).
45.
45. Golze D, Dvorak M, Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Frontiers in Chemistry. 2019; 7: 377.
46.
46. Struzzi C, Praveen CS, Scardamaglia M, et al. Controlled thermodynamics for tunable electron doping of graphene on Ir(111). Physical Review B. 2016; 94(8).
47.
47. Lu H, Guo Y, Robertson J. Charge transfer doping of graphene without degrading carrier mobility. Journal of Applied Physics. 2017; 121(22).
48.
48. Kihlgren T, Balasubramanian T, Walld´en L, Yakimova R. K/graphite: Uniform energy shifts of graphite valence states. Surface Science. 2006; 600(5): 1160–1164.
49.
49. Wang Z, Ratvik AP, Grande T, Sverre M. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations. RSC Advances. 2015; 5(21): 15985–15992.
50.
50. Bostwick A, Speck F, Seyller T, et al. Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Science. 2010; 328(5981): 999–1002.
51.
51. Matsui F, Eguchi R, Nishiyama S, et al. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface. Scientific Reports. 2016; 6(1): 1–10.
52.
52. Preil ME, Fischer JE. X-Ray Photoelectron Study of the Valence Band of KC8: Direct Experimental Proof of CompleteK(4s)Charge Transfer. Physical Review Letters. 1984; 52(13): 1141–1144.
53.
53. Mir SH, Yadav VK, Singh JK. Recent Advances in the Carrier Mobility of Two-Dimensional Materials: A Theoretical Perspective. ACS Omega. 2020; 5(24): 14203–14211.
54.
54. Marzari N, Ferretti A, Wolverton C. Electronic-structure methods for materials design. Nature Materials. 2021; 20(6): 736–749.
55.
55. Oelhafen P, Pfluger P, Hauser E, G¨untherodt HJ. Evidence for an alkali-like conduction band in alkali graphite intercalation compounds. Solid State Communications. 1980; 33(2): 241–244.
56.
56. Sun LF, Dong LM, Wu ZF, Fang C. A comparison of the transport properties of bilayer graphene, monolayer graphene, and two-dimensional electron gas. Chinese Physics B. 2013; 22(7): 077201.
57.
57. Shokuhifard R, Fuladvand H. Fundamental differences between mono-and bi-layer graphene. International Journal of Science and Applied Science Conference Series 3(Fundamental Differences between Mono- and Bi-layer Graphene). 2010; 78–83.
58.
58. Jacak J, Jacak L. Difference in hierarchy of fqhe between monolayer and bilayer graphene. Physics Letters A. 2015; 379(36): 2130–2134.
59.
59. Chepkasov IV, Ghorbani-Asl M, Popov ZI, et al. Alkali metals inside bi-layer graphene and mos2: Insights from first-principles calculations. Nano Energy. 2020; 75: 104927.
60.
60. Ma J, Yang C, Ma X, et al. Improvement of alkali metal ion batteries via interlayer engineering of anodes: from graphite to graphene. Nanoscale, 2021; 13(29): 12521–12533.
61.
61. Chepkasov IV, Smet JH, Krasheninnikov AV. Single-and multilayers of alkali metal atoms inside graphene/mos2 heterostructures: A systematic first-principles study. The Journal of Physical Chemistry C. 2022; 126(37): 15558–15564.
62.
62. Wang X, Zhang W, Ni K, et al. Alkali metals induced stacking phase transition of graphite. Carbon. 2023; 213: 118295.
63.
63. Zinni J, Camerano L, Speyer L, et al. Charge transfer in alkaline-earth metal graphite intercalation compounds. Carbon. 2024; 230: 119652.
64.
64. Zhou J, Lin Z, Ren H, et al. Layered intercalation materials. Advanced Materials. 2021; 33(25): 2004557.
65.
65. Zhang Y, Zhang L, Lv T, et al. Two-dimensional transition metal chalcogenides for alkali metal ions storage. ChemSusChem. 2020; 13(6): 1114–1154.
66.
66. Vashishth S, Eswaramoorthy M. Investigation of heteroatom doped graphene anode for high-capacity alkali metal-ion batteries. Electrochemical Society Meeting Abstracts. 2023; 244(4): 518–518.
67.
67. Lin Y, Matsumoto R, Liu Q, et al. Alkali metal bilayer intercalation in graphene. Nature communications. 2024; 15(1): 425.
68.
68. Yadav A, Kobayashi H, Yamamoto T, Nohira T. Electrochemical rubidium storage behavior of graphite in ionic liquid electrolyte. Electrochemistry. 2023; 91(1).
69.
69. Wu X, Zheng F, Kang F, Li J. Effects of lithium intercalation in bilayer graphene. Physical Review B. 2023; 107(16).
70.
70. Gogina AA, Tarasov AV, Eryzhenkov AV, et al. Adsorption of na monolayer on graphene covered pt(111) substrate. JETP Letters. 2023; 117(2): 138–146.
71.
71. Lu B, Ru N, Duan J, et al. In-plane porous graphene: A promising anode material with high ion mobility and energy storage for rubidium-ion batteries. ACS Omega. 2023; 8(24): 21842–21852.
72.
72. Yadav A, Kobayashi H, Yamamoto T, Nohira T. Electrochemical intercalation of cesium into graphite in ionic liquid electrolyte. Electrochemistry. 2024; 92(4).
73.
73. Li S, Dong R, Li Y, et al. Advances in free-standing electrodes for sodium ion batteries. Materials Today. 2024; 72: 207–234.
DOI: https://doi.org/10.24294/can10326
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.