Abstract
Cysteine is one of the body’s essential amino acids to build proteins. For the early diagnosis of a number of diseases and biological issues, L-cysteine (L-Cys) is essential. Our study presents an electrochemical sensor that detects L-cysteine by immobilizing the horseradish peroxidase (HRP) enzyme on a reduced graphene oxide (GCE) modified glassy carbon electrode. The morphologies and chemical compositions of synthesized materials were examined using Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM). The modified electrode’s electrochemical behavior was investigated using cyclic voltammetry (CV). Cyclic voltammetry demonstrated HRP/rGO/GCE has better electrocatalytic activity than bare GCE in the oxidation of L-cysteine oxidation in a solution of acetate buffer. The electrochemical sensor had a broad linear range of 0 µM to 1 mM, a 0.32 µM detection limit, and a sensitivity of 6.08 μA μM−1 cm−2. The developed sensor was successfully used for the L-cysteine detection in a real blood sample with good results.
Keywords
l-cysteine; enzyme; graphene oxide; electrochemical sensor; cyclic voltammetry
References
Rehman T, Shabbir MA, Inam-Ur-Raheem M, et al. Cysteine and homocysteine as biomarker of various diseases. Food Science & Nutrition. 2020; 8(9): 4696–4707. doi: 10.1002/fsn3.1818
Tajik S, Dourandish Z, Jahani PM, et al. Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Advances. 2021; 11(10): 5411–5425. doi: 10.1039/d0ra07614g
Ivanov AV, Bulgakova PO, Virus ED, et al. Capillary electrophoresis coupled with chloroform‐acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. ELECTROPHORESIS. 2017; 38(20): 2646–2653. doi: 10.1002/elps.201700133
Forgacsova A, Galba J, Mojzisova J, et al. Ultra-high performance hydrophilic interaction liquid chromatography—Triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. Journal of Pharmaceutical and Biomedical Analysis. 2019; 164: 442–451. doi: 10.1016/j.jpba.2018.10.053
Yang N, Song H, Wan X, et al. A metal (Co)–organic framework-based chemiluminescence system for selective detection of l-cysteine. The Analyst. 2015; 140(8): 2656–2663. doi: 10.1039/c5an00022j
Zhang L, Lu B, Lu C, et al. Determination of cysteine, homocysteine, cystine, and homocystine in biological fluids by HPLC using fluorosurfactant-capped gold nanoparticles as postcolumn colorimetric reagents. Journal of Separation Science. 2013; 37(1–2): 30–36. doi: 10.1002/jssc.201300998
Hai X, Lin X, Chen X, et al. Highly selective and sensitive detection of cysteine with a graphene quantum dots-gold nanoparticles based core-shell nanosensor. Sensors and Actuators B: Chemical. 2018; 257: 228–236. doi: 10.1016/j.snb.2017.10.169
Kazemi S, Karimi-Maleh H, Hosseinzadeh R, et al. Selective and sensitive voltammetric sensor based on modified multiwall carbon nanotubes paste electrode for simultaneous determination of l-cysteine and folic acid. Ionics. 2012; 19(6): 933–940. doi: 10.1007/s11581-012-0816-7
Jerome R, Keerthivasan PV, Murugan N, et al. Preparation of Stable CuO/Boron Nitride Nanocomposite Modified Electrode for Selective Electrochemical Detection of L–Cysteine. ChemistrySelect. 2020; 5(29): 9111–9118. doi: 10.1002/slct.202002105
Thota R, Ganesh V. Simple and facile preparation of silver–polydopamine (Ag–PDA) core–shell nanoparticles for selective electrochemical detection of cysteine. RSC Advances. 2016; 6(55): 49578–49587. doi: 10.1039/c6ra06994k
Cao F, Huang Y, Wang F, et al. A high-performance electrochemical sensor for biologically meaningful l-cysteine based on a new nanostructured l-cysteine electrocatalyst. Analytica Chimica Acta. 2018; 1019: 103–110. doi: 10.1016/j.aca.2018.02.048
Majd SM, Teymourian H, Salimi A. Fabrication of an Electrochemical L‐Cysteine Sensor Based on Graphene Nanosheets Decorated Manganese Oxide Nanocomposite Modified Glassy Carbon Electrode. Electroanalysis. 2013; 25(9): 2201–2210. doi: 10.1002/elan.201300245
Perevezentseva DO, Gorchakov EV. Voltammetric determination of cysteine at a graphite electrode modified with gold nanoparticles. Journal of Solid State Electrochemistry. 2012; 16(7): 2405–2410. doi: 10.1007/s10008-012-1727-2
Liu X, Luo L, Ding Y, et al. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry. 2012; 86: 38–45. doi: 10.1016/j.bioelechem.2012.01.008
Yang S, Li G, Wang Y, et al. Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchimica Acta. 2016; 183(4): 1351–1357. doi: 10.1007/s00604-015-1737-8
Al-Gahouari T, Bodkhe G, Sayyad P, et al. Electrochemical sensor: L-cysteine induced selectivity enhancement of electrochemically reduced graphene oxide–multiwalled carbon nanotubes hybrid for detection of lead (Pb 2+) ions. Frontiers in Materials. 2020; 7: 68. doi: 10.3389/fmats.2020.00068
Singh M, Jaiswal N, Tiwari I, et al. A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. Journal of Electroanalytical Chemistry. 2018; 829: 230–240. doi: 10.1016/j.jelechem.2018.09.018
Li J, Zhang L. 3D pothole-rich hierarchical carbon framework-encapsulated Ni nanoparticles for highly selective nonenzymatic cysteine detection. Electrochimica Acta. 2019; 328: 135126. doi: 10.1016/j.electacta.2019.135126
Kaur B, Srivastava R, Satpati B. A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione. RSC Advances. 2015; 5(115): 95028–95037. doi: 10.1039/c5ra19249h
Wu L, Li J, Zhang H. One Step Fabrication of Au Nanoparticles‐Ni‐Al Layered Double Hydroxide Composite Film for the Determination of L‐Cysteine. Electroanalysis. 2015; 27(5): 1195–1201. doi: 10.1002/elan.201400624
Ziyatdinova G, Kozlova E, Budnikov H. Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine. Electrochimica Acta. 2018; 270: 369–377. doi: 10.1016/j.electacta.2018.03.102
Ojani R, Raoof JB, Zarei E. Preparation of poly N, N-dimethylaniline/ferrocyanide film modified carbon paste electrode: Application to electrocatalytic oxidation of l-cysteine. Journal of Electroanalytical Chemistry. 2010; 638(2): 241–245. doi: 10.1016/j.jelechem.2009.11.005
Moradi R, Sebt SA, Karimi-Maleh H, et al. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Physical Chemistry Chemical Physics. 2013; 15(16): 5888–5897. doi: 10.1039/c3cp00033h
Ru J, Du J, Qin DD, et al. An electrochemical glutathione biosensor: Ubiquinone as a transducer. Talanta. 2013; 110: 15–20. doi: 10.1016/j.talanta.2013.03.038
Malik S, Singh J, Goyat R, et al. Nanomaterials-based biosensor and their applications: A review. Heliyon. 2023; 9(9): e19929. doi: 10.1016/j.heliyon.2023.e19929
Suhito IR, Koo KM, Kim TH. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines. 2020; 9(1): 15. doi: 10.3390/biomedicines9010015
Kilic NM, Singh S, Keles G, et al. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. Biosensors. 2023; 13(6): 622. doi: 10.3390/bios13060622
Fredj Z, Singh B, Bahri M, et al. Enzymatic Electrochemical Biosensors for Neurotransmitters Detection: Recent Achievements and Trends. Chemosensors. 2023; 11(7): 388. doi: 10.3390/chemosensors11070388
Navaee A, Salimi A. Enzyme-based electrochemical biosensors. Electrochemical Biosensors. 2019: 167–211. doi: 10.1016/b978-0-12-816491-4.00007-3
Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958; 80(6): 1339–1339. doi: 10.1021/ja01539a017
Hidayat R, Wahyuningsih S, Ramelan A. Simple synthesis of rGO (reduced graphene oxide) by thermal reduction of GO (graphene oxide). IOP Conference Series: Materials Science and Engineering. 2020; 858(1): 012009. doi: 10.1088/1757-899x/858/1/012009
Atacan K. CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for ʟ-cysteine detection. Journal of Alloys and Compounds. 2019; 791: 391–401. doi: 10.1016/j.jallcom.2019.03.303
Rasheed PA, Pandey RP, Jabbar KA, et al. Sensitive electrochemical detection of l-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode. Analytical Methods. 2019; 11(30): 3851–3856. doi: 10.1039/c9ay00912d
Wang Y, Wang W, Li G, et al. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Microchimica Acta. 2016; 183(12): 3221–3228. doi: 10.1007/s00604-016-1974-5
Abbaspour A, Ghaffarinejad A. Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochimica Acta. 2008; 53(22): 6643–6650. doi: 10.1016/j.electacta.2008.04.065
Yusoff N, Rameshkumar P, Mohamed Noor A, et al. Amperometric determination of L-cysteine using a glassy carbon electrode modified with palladium nanoparticles grown on reduced graphene oxide in a Nafion matrix. Microchimica Acta. 2018; 185(4): 1–10. doi: 10.1007/s00604-018-2782-x
Silva F de A dos S, da Silva MGA, Lima PR, et al. A very low potential electrochemical detection of l-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosensors and Bioelectronics. 2013; 50: 202–209. doi: 10.1016/j.bios.2013.06.036
Sui M, Huang Y, Tang Y, et al. A high-sensitivity AuNPs/MWCNTs-MB/DNA-GCE quadruplex biosensor for Pb detection in medicinal teas through in-situ monitoring microstructure and conformational switch by SECM. Sensors and Actuators B: Chemical. 2023; 393: 134193. doi: 10.1016/j.snb.2023.134193