Enzymatic electrochemical biosensor for detection of L-Cysteine based on reduced graphene oxide modified glassy carbon electrode

Neeta Ukirade

Article ID: 10219
Vol 8, Issue 1, 2025


Abstract


Cysteine is one of the body’s essential amino acids to build proteins. For the early diagnosis of a number of diseases and biological issues, L-cysteine (L-Cys) is essential. Our study presents an electrochemical sensor that detects L-cysteine by immobilizing the horseradish peroxidase (HRP) enzyme on a reduced graphene oxide (GCE) modified glassy carbon electrode. The morphologies and chemical compositions of synthesized materials were examined using Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM). The modified electrode’s electrochemical behavior was investigated using cyclic voltammetry (CV). Cyclic voltammetry demonstrated HRP/rGO/GCE has better electrocatalytic activity than bare GCE in the oxidation of L-cysteine oxidation in a solution of acetate buffer. The electrochemical sensor had a broad linear range of 0 µM to 1 mM, a 0.32 µM detection limit, and a sensitivity of 6.08 μA μM−1 cm−2. The developed sensor was successfully used for the L-cysteine detection in a real blood sample with good results.


Keywords


l-cysteine; enzyme; graphene oxide; electrochemical sensor; cyclic voltammetry

Full Text:

PDF


References


1. Rehman T, Shabbir MA, Inam-Ur-Raheem M, et al. Cysteine and homocysteine as biomarker of various diseases. Food Science & Nutrition. 2020; 8(9): 4696–4707. doi: 10.1002/fsn3.1818

2. Tajik S, Dourandish Z, Jahani PM, et al. Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Advances. 2021; 11(10): 5411–5425. doi: 10.1039/d0ra07614g

3. Ivanov AV, Bulgakova PO, Virus ED, et al. Capillary electrophoresis coupled with chloroform‐acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. ELECTROPHORESIS. 2017; 38(20): 2646–2653. doi: 10.1002/elps.201700133

4. Forgacsova A, Galba J, Mojzisova J, et al. Ultra-high performance hydrophilic interaction liquid chromatography—Triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. Journal of Pharmaceutical and Biomedical Analysis. 2019; 164: 442–451. doi: 10.1016/j.jpba.2018.10.053

5. Yang N, Song H, Wan X, et al. A metal (Co)–organic framework-based chemiluminescence system for selective detection of l-cysteine. The Analyst. 2015; 140(8): 2656–2663. doi: 10.1039/c5an00022j

6. Zhang L, Lu B, Lu C, et al. Determination of cysteine, homocysteine, cystine, and homocystine in biological fluids by HPLC using fluorosurfactant-capped gold nanoparticles as postcolumn colorimetric reagents. Journal of Separation Science. 2013; 37(1–2): 30–36. doi: 10.1002/jssc.201300998

7. Hai X, Lin X, Chen X, et al. Highly selective and sensitive detection of cysteine with a graphene quantum dots-gold nanoparticles based core-shell nanosensor. Sensors and Actuators B: Chemical. 2018; 257: 228–236. doi: 10.1016/j.snb.2017.10.169

8. Kazemi S, Karimi-Maleh H, Hosseinzadeh R, et al. Selective and sensitive voltammetric sensor based on modified multiwall carbon nanotubes paste electrode for simultaneous determination of l-cysteine and folic acid. Ionics. 2012; 19(6): 933–940. doi: 10.1007/s11581-012-0816-7

9. Jerome R, Keerthivasan PV, Murugan N, et al. Preparation of Stable CuO/Boron Nitride Nanocomposite Modified Electrode for Selective Electrochemical Detection of L–Cysteine. ChemistrySelect. 2020; 5(29): 9111–9118. doi: 10.1002/slct.202002105

10. Thota R, Ganesh V. Simple and facile preparation of silver–polydopamine (Ag–PDA) core–shell nanoparticles for selective electrochemical detection of cysteine. RSC Advances. 2016; 6(55): 49578–49587. doi: 10.1039/c6ra06994k

11. Cao F, Huang Y, Wang F, et al. A high-performance electrochemical sensor for biologically meaningful l-cysteine based on a new nanostructured l-cysteine electrocatalyst. Analytica Chimica Acta. 2018; 1019: 103–110. doi: 10.1016/j.aca.2018.02.048

12. Majd SM, Teymourian H, Salimi A. Fabrication of an Electrochemical L‐Cysteine Sensor Based on Graphene Nanosheets Decorated Manganese Oxide Nanocomposite Modified Glassy Carbon Electrode. Electroanalysis. 2013; 25(9): 2201–2210. doi: 10.1002/elan.201300245

13. Perevezentseva DO, Gorchakov EV. Voltammetric determination of cysteine at a graphite electrode modified with gold nanoparticles. Journal of Solid State Electrochemistry. 2012; 16(7): 2405–2410. doi: 10.1007/s10008-012-1727-2

14. Liu X, Luo L, Ding Y, et al. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry. 2012; 86: 38–45. doi: 10.1016/j.bioelechem.2012.01.008

15. Yang S, Li G, Wang Y, et al. Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchimica Acta. 2016; 183(4): 1351–1357. doi: 10.1007/s00604-015-1737-8

16. Al-Gahouari T, Bodkhe G, Sayyad P, et al. Electrochemical sensor: L-cysteine induced selectivity enhancement of electrochemically reduced graphene oxide–multiwalled carbon nanotubes hybrid for detection of lead (Pb 2+) ions. Frontiers in Materials. 2020; 7: 68. doi: 10.3389/fmats.2020.00068

17. Singh M, Jaiswal N, Tiwari I, et al. A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. Journal of Electroanalytical Chemistry. 2018; 829: 230–240. doi: 10.1016/j.jelechem.2018.09.018

18. Li J, Zhang L. 3D pothole-rich hierarchical carbon framework-encapsulated Ni nanoparticles for highly selective nonenzymatic cysteine detection. Electrochimica Acta. 2019; 328: 135126. doi: 10.1016/j.electacta.2019.135126

19. Kaur B, Srivastava R, Satpati B. A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione. RSC Advances. 2015; 5(115): 95028–95037. doi: 10.1039/c5ra19249h

20. Wu L, Li J, Zhang H. One Step Fabrication of Au Nanoparticles‐Ni‐Al Layered Double Hydroxide Composite Film for the Determination of L‐Cysteine. Electroanalysis. 2015; 27(5): 1195–1201. doi: 10.1002/elan.201400624

21. Ziyatdinova G, Kozlova E, Budnikov H. Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine. Electrochimica Acta. 2018; 270: 369–377. doi: 10.1016/j.electacta.2018.03.102

22. Ojani R, Raoof JB, Zarei E. Preparation of poly N, N-dimethylaniline/ferrocyanide film modified carbon paste electrode: Application to electrocatalytic oxidation of l-cysteine. Journal of Electroanalytical Chemistry. 2010; 638(2): 241–245. doi: 10.1016/j.jelechem.2009.11.005

23. Moradi R, Sebt SA, Karimi-Maleh H, et al. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Physical Chemistry Chemical Physics. 2013; 15(16): 5888–5897. doi: 10.1039/c3cp00033h

24. Ru J, Du J, Qin DD, et al. An electrochemical glutathione biosensor: Ubiquinone as a transducer. Talanta. 2013; 110: 15–20. doi: 10.1016/j.talanta.2013.03.038

25. Malik S, Singh J, Goyat R, et al. Nanomaterials-based biosensor and their applications: A review. Heliyon. 2023; 9(9): e19929. doi: 10.1016/j.heliyon.2023.e19929

26. Suhito IR, Koo KM, Kim TH. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines. 2020; 9(1): 15. doi: 10.3390/biomedicines9010015

27. Kilic NM, Singh S, Keles G, et al. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. Biosensors. 2023; 13(6): 622. doi: 10.3390/bios13060622

28. Fredj Z, Singh B, Bahri M, et al. Enzymatic Electrochemical Biosensors for Neurotransmitters Detection: Recent Achievements and Trends. Chemosensors. 2023; 11(7): 388. doi: 10.3390/chemosensors11070388

29. Navaee A, Salimi A. Enzyme-based electrochemical biosensors. Electrochemical Biosensors. 2019: 167–211. doi: 10.1016/b978-0-12-816491-4.00007-3

30. Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958; 80(6): 1339–1339. doi: 10.1021/ja01539a017

31. Hidayat R, Wahyuningsih S, Ramelan A. Simple synthesis of rGO (reduced graphene oxide) by thermal reduction of GO (graphene oxide). IOP Conference Series: Materials Science and Engineering. 2020; 858(1): 012009. doi: 10.1088/1757-899x/858/1/012009

32. Atacan K. CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for ʟ-cysteine detection. Journal of Alloys and Compounds. 2019; 791: 391–401. doi: 10.1016/j.jallcom.2019.03.303

33. Rasheed PA, Pandey RP, Jabbar KA, et al. Sensitive electrochemical detection of l-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode. Analytical Methods. 2019; 11(30): 3851–3856. doi: 10.1039/c9ay00912d

34. Wang Y, Wang W, Li G, et al. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Microchimica Acta. 2016; 183(12): 3221–3228. doi: 10.1007/s00604-016-1974-5

35. Abbaspour A, Ghaffarinejad A. Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochimica Acta. 2008; 53(22): 6643–6650. doi: 10.1016/j.electacta.2008.04.065

36. Yusoff N, Rameshkumar P, Mohamed Noor A, et al. Amperometric determination of L-cysteine using a glassy carbon electrode modified with palladium nanoparticles grown on reduced graphene oxide in a Nafion matrix. Microchimica Acta. 2018; 185(4): 1–10. doi: 10.1007/s00604-018-2782-x

37. Silva F de A dos S, da Silva MGA, Lima PR, et al. A very low potential electrochemical detection of l-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosensors and Bioelectronics. 2013; 50: 202–209. doi: 10.1016/j.bios.2013.06.036

38. Sui M, Huang Y, Tang Y, et al. A high-sensitivity AuNPs/MWCNTs-MB/DNA-GCE quadruplex biosensor for Pb detection in medicinal teas through in-situ monitoring microstructure and conformational switch by SECM. Sensors and Actuators B: Chemical. 2023; 393: 134193. doi: 10.1016/j.snb.2023.134193




DOI: https://doi.org/10.24294/can10219

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.