References
Ranjekar AM, Yadav GD. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope. Industrial & Engineering Chemistry Research 2021; 60(1): 89–113. doi: 10.1021/acs.iecr.0c05041
Olah GA. Towards oil independence through renewable methanol chemistry. Angewandte Chemie International Edition 2013; 52(1): 104–107. doi: 10.1002/anie.201204995
Wang J, Wang H, Hu P. Theoretical insight into methanol steam reforming on indium oxide with different coordination environments. Science China Chemistry 2018; 61: 336–343. doi: 10.1007/s11426-017-9139-x
Cacciola G, Antonucci V, Freni S. Technology up date and new strategies on fuel cells. Journal of power sources 2001; 100(1–2): 67–79. doi: 10.1016/S0378-7753(01)00884-9
Xu X, Liu X, Xu B. A survey of nickel-based catalysts and monolithic reformers of the onboard fuel reforming system for fuel cell APU applications. International Journal of Energy Research 2016; 40(9): 1157–1177. doi: 10.1002/er.3509
Kaftan A, Kusche M, Laurin M, et al. KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study. Applied Catalysis B: Environmental 2017; 201: 169–181. doi: 10.1016/j.apcatb.2016.08.016
García L. Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. In: Subramani V, Basile A, Veziroğlu TN (editors). Compendium of Hydrogen Energy. Woodhead Publishing; 2015. pp. 83–107.
Sun P, Young B, Elgowainy A, et al. Criteria air pollutants and greenhouse gas emissions from hydrogen production in US steam methane reforming facilities. Environmental science & technology 2019; 53(12): 7103–7113. doi: 10.1021/acs.est.8b06197
Cormos AM, Szima S, Fogarasi S, Cormos CC. Economic assessments of hydrogen production processes based on natural gas reforming with carbon capture. Chemical Engineering Transactions 2018; 70: 1231–1236. doi: 10.3303/CET1870206
Byun M, Lee B, Lee H, et al. Techno-economic and environmental assessment of methanol steam reforming for H2 production at various scales. International Journal of Hydrogen Energy 2020; 45(46): 24146–24158. doi: 10.1016/j.ijhydene.2020.06.097
Ribeirinha P, Mateos-Pedrero C, Boaventura M, et al. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: Synthesis, characterization and kinetic model. Applied Catalysis B: Environmental 2018; 221: 371–379. doi: 10.1016/j.apcatb.2017.09.040
Basile A, Parmaliana A, Tosti S, et al. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst. Catalysis Today 2008; 137(1): 17–22. doi: 10.1016/j.cattod.2008.03.015
Ott J, Gronemann V, Pontzen F, et al. Methanol. In: Ullmann’s Encyclopedia of Industrial Chemistry. American Cancer Society; 2012. doi: 10.1002/14356007.a16_465.pub3
Ahmed S, Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells. International Journal of Hydrogen Energy 2001; 26(4); 291–301. doi: 10.1016/S0360-3199(00)00097-5
Staffell I, Scamman D, Abad AV, et al. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 2019; 12(2): 463–491. doi: 10.1039/c8ee01157e
Dhar HP, Christner LG, Kush AK. Nature of CO adsorption during H2 oxidation in relation to modeling for CO poisoning of a fuel cell anode. Journal of the Electrochemical Society 1987; 134(12): 3021. doi: 10.1149/1.2100333
Kubacka A, Fernández-García M, Martínez-Arias A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Applied Catalysis A: General 2016; 518: 2–17. doi: 10.1016/j.apcata.2016.01.027
Karim AM, Conant T, Datye AK. Controlling ZnO morphology for improved methanol steam reforming reactivity. Physical Chemistry Chemical Physics 2008; 10(36): 5584–5590. doi: 10.1039/b800009c
Papavasiliou J, Avgouropoulos G, Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Applied Catalysis B: Environmental 2009; 88(3–4): 490–496. doi: 10.1016/j.apcatb.2008.10.018
Kubacka A, Martínez-Arias A, Fernández-García M. Role of the interface in base-metal ceria-based catalysts for hydrogen purification and production processes. ChemCatChem 2015; 7(22): 3614–3624. doi: 10.1002/cctc.201500593
Hardiman KM, Ying TT, Adesina AA, et al. Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios. Chemical Engineering Journal 2004; 102(2): 119–130. doi: 10.1016/j.cej.2004.03.005
Alenazey F, Cooper CG, Dave CB, et al. Coke removal from deactivated Co-Ni steam reforming catalyst using different gasifying agents: An analysis of the gas-solid reaction kinetics. Catalysis Communications 2009; 10(4): 406–411. doi: 10.1016/j.catcom.2008.10.010
Song H, Ozkan US. Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations. International Journal of Hydrogen Energy 2010; 35(1); 127–134. doi: 10.1016/j.ijhydene.2009.10.043
Zhang G, Jin W, Xu N. Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 2018; 4(6): 848–860. doi: 10.1016/j.eng.2017.05.001
Gallucci F, Fernandez E, Corengia P, van Sint Annaland M. Recent advances on membranes and membrane reactors for hydrogen production. Chemical Engineering Science 2013; 92: 40–66. doi: 10.1016/j.ces.2013.01.008
Liuzzi D, Fernandez E, Perez S, et al. Advances in membranes and membrane reactors for the Fischer-Tropsch synthesis process for biofuel production. Reviews in Chemical Engineering 2022; 38(1): 55–76. doi: 10.1515/revce-2019-0067
Pashchenko D. Low-grade heat utilization in the methanol-fired gas turbines through a thermochemical fuel transformation. Thermal Science and Engineering Progress 2022; 36: 101537. doi: 10.1016/j.tsep.2022.101537
Pashchenko D, Gnutikova M, Karpilov I. Comparison study of thermochemical waste-heat recuperation by steam reforming of liquid biofuels. International Journal of Hydrogen Energy 2020; 45(7): 4174–4181. doi: 10.1016/j.ijhydene.2019.11.202
Pashchenko D. Thermochemical waste-heat recuperation as on-board hydrogen production technology. International Journal of Hydrogen Energy 2021; 46(57): 28961–28968. doi: 10.1016/j.ijhydene.2020.11.108
Pashchenko D. Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation. Energy 2019; 166: 462–470. doi: 10.1016/j.energy.2018.10.084
Pashchenko D, Karpilov I, Mustafin R. Numerical calculation with experimental validation of pressure drop in a fixed-bed reactor filled with the porous elements. AIChE Journal 2020; 66(5): e16937. doi: 10.1002/aic.16937
Thattarathody R, Artoul M, Digilov RM, Sheintuch M. Pressure, diffusion, and S/M ratio effects in methanol steam reforming kinetics. Industrial & Engineering Chemistry Research 2018; 57(9): 3175–3186. doi: 10.1021/acs.iecr.7b05033
Wang J, Wu J, Xu Z, Li M. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming. Energy Conversion and Management 2017; 150: 81–89. doi: 10.1016/j.enconman.2017.08.012
Hosseini SS, Mehrpooya M, Alsagri AS, Alrobaian AA. Introducing, evaluation and exergetic performance assessment of a novel hybrid system composed of MCFC, methanol synthesis process, and a combined power cycle. Energy Conversion and Management 2019; 197: 111878. doi: 10.1016/j.enconman.2019.111878
Schuller G, Vázquez FV, Waiblinger W, et al. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer. Journal of Power Sources 2017; 347: 47–56. doi: 10.1016/j.jpowsour.2017.02.021
Sun Z, Fang S, Lin Y, Hu YH. Photo-assisted methanol steam reforming on solid solution of Cu-Zn-Ti oxide. Chemical Engineering Journal 2019; 375: 121909. doi: 10.1016/j.cej.2019.121909
Chiarello GL, Ferri D, Selli E. In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2. Applied Surface Science 2018; 450: 146–154. doi: 10.1016/j.apsusc.2018.04.167
Fasolini A, Cucciniello R, Paone E, et al. A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6-C5 sugars and polyols. Catalysts 2019; 9(11): 917. doi: 10.3390/catal9110917
Huber GW, Dumesic JA. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today 2006; 111(1–2): 119–132. doi: 10.1016/j.cattod.2005.10.010
Davda RR, Shabaker JW, Huber GW, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental 2005; 56(1–2): 171–186. doi: 10.1016/j.apcatb.2004.04.027
Stekrova M, Rinta-Paavola A, Karinen R. Hydrogen production via aqueous-phase reforming of methanol over nickel modified Ce, Zr and La oxide supports. Catalysis Today 2018; 304: 143–152. doi: 10.1016/j.cattod.2017.08.030
Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002; 418(6901): 964–967. doi: 10.1038/nature01009
Sharma R, Kumar A, Upadhyay RK. Bimetallic Fe-promoted catalyst for CO-free hydrogen production in high-temperature-methanol steam reforming. ChemCatChem 2019; 11(18): 4568–4580. doi: 10.1002/cctc.201901062
Andersson J, Grönkvist S. Large-scale storage of hydrogen. International Journal of Hydrogen Energy 2019; 44(23): 11901–11919. doi: 10.1016/j.ijhydene.2019.03.063
Goeppert A, Czaun M, Jones JP, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chemical Society Reviews 2014; 43(23): 7995–8048. doi: 10.1039/c4cs00122b
Guczi L, Erdôhelyi A (editors). Catalysis for Alternative Energy Generation. Springer; 2012.
Richards N, Needels J, Erickson P. Autothermal-reformation enhancement using a stratified-catalyst technique. International Journal of Hydrogen Energy 2017; 42(41): 25914–25923. doi: 10.1016/j.ijhydene.2017.08.050
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. Angewandte Chemie International Edition 2016; 55(26): 7296–7343. doi: 10.1002/anie.201507458
Emami SD, Kasmani RM, Hamid MD, et al. Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems—A review paper. Renewable and Sustainable Energy Reviews 2016; 62: 1072–1082. doi: 10.1016/j.rser.2016.05.029
Chehade G, Lytle S, Ishaq H, et al. Hydrogen production by microwave based plasma dissociation of water. Fuel 2020; 264: 116831. doi: 10.1016/j.fuel.2019.116831
Niermann M, Beckendorff A, Kaltschmitt M, Bonhoff K. Liquid organic hydrogen carrier (LOHC)—Assessment based on chemical and economic properties. International Journal of Hydrogen Energy 2019; 44: 6631–6654. doi: 10.1016/j.ijhydene.2019.01.199
Dimitriou P, Tsujimura T. A review of hydrogen as a compression ignition engine fuel. International Journal of Hydrogen Energy 2017; 42(38): 24470–24486. doi: 10.1016/j.ijhydene.2017.07.232
Yan F, Xu L, Wang Y. Application of hydrogen enriched natural gas in spark ignition IC engines: From fundamental fuel properties to engine performances and emissions. Renewable and Sustainable Energy Reviews 2018; 82: 1457–1488. doi: 10.1016/j.rser.2017.05.227
Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 2012; 16(5): 3024–3033. doi: 10.1016/j.rser.2012.02.028
Li H, Ma C, Zou X, et al. On-board methanol catalytic reforming for hydrogen production—A review. International Journal of Hydrogen Energy 2021; 46(43): 22303–22327. doi: 10.1016/j.ijhydene.2021.04.062
Yong ST, Ooi CW, Chai SP, Wu XS. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. International Journal of Hydrogen Energy 2013; 38(22): 9541–9552. doi: 10.1016/j.ijhydene.2013.03.023
Kubacka A, Fernández-García M, Martínez-Arias A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Applied Catalysis A: General 2016; 518: 2–17. doi: 10.1016/j.apcata.2016.01.027
Li J, Mei X, Zhang L, et al. A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn-based catalysts in steam reforming of methanol, acetic acid and acetone. International Journal of Hydrogen Energy 2020; 45(6): 3815–3832. doi: 10.1016/j.ijhydene.2019.03.269
Fu Z, Wang J, Zhang N, et al. Effect of Cu doping on the catalytic activity of Fe3O4 in water-gas shift reactions. International Journal of Hydrogen Energy 2015; 40(5): 2193–2198. doi: 10.1016/j.ijhydene.2014.12.063
Wang L, Zhang F, Miao D, et al. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production. Materials Research Express 2017; 4(3): 035005. doi: 10.1088/2053-1591/4/3/035005
Zhang F, Guo H, Wang L, et al. Porous Al63Cu25Fe12 quasicrystals covered with (Al11.5Fe13.9Cu19.7)O54.9 nanosheets. Materials Characterization 2019; 147: 165–172. doi: 10.1016/j.matchar.2018.10.026
Azenha CSR, Mateos-Pedrero C, Queirós S, et al. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming. Applied Catalysis B: Environmental 2017; 203: 400–407. doi: 10.1016/j.apcatb.2016.10.041
Ahmadi F, Haghighi M, Ajamein H. Sonochemically coprecipitation synthesis of CuO/ZnO/ZrO2/Al2O3 nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming. Journal of Molecular Catalysis A: Chemical 2016; 421: 196–208. doi: 10.1016/j.molcata.2016.05.027
Sanches SG, Flores JH, da Silva MIP. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming. Molecular Catalysis 2018; 454: 55–62. doi: 10.1016/j.mcat.2018.05.012
Gac W, Słowik G, Zawadzki W. Structural and surface changes of copper modified manganese oxides. Applied Surface Science 2016; 370: 536–544. doi: 10.1016/j.apsusc.2016.02.136
Liu X, Toyir J, de la Piscina PR, Homs N. Hydrogen production from methanol steam reforming over Al2O3- and ZrO2-modified CuOZnOGa2O3 catalysts. International Journal of Hydrogen Energy 2017; 42(19): 13704–13711. doi: 10.1016/j.ijhydene.2016.12.133
Toyir J, de la Piscina PR, Homs N. Ga-promoted copper-based catalysts highly selective for methanol steam reforming to hydrogen; relation with the hydrogenation of CO2 to methanol. International Journal of Hydrogen Energy 2015; 40(34): 11261–11266. doi: 10.1016/j.ijhydene.2015.04.039
Shokrani R, Haghighi M, Jodeiri N, et al. Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method. International Journal of Hydrogen Energy 2014; 39(25): 13141–13155. doi: 10.1016/j.ijhydene.2014.06.048
Bagherzadeh SB, Haghighi M, Rahemi N. Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol: Influence of ceria-zirconia loading. Energy Conversion and Management 2017; 134: 88–102. doi: 10.1016/j.enconman.2016.12.005
Li H, Tian H, Chen S, et al. Sorption enhanced steam reforming of methanol for high-purity hydrogen production over Cu-MgO/Al2O3 bifunctional catalysts. Applied Catalysis B: Environmental 2020; 276: 119052. doi: 10.1016/j.apcatb.2020.119052
Lytkina AA, Orekhova NV, Ermilova MM, Yaroslavtsev AB. The influence of the support composition and structure (MХZr1-XO2-δ) of bimetallic catalysts on the activity in methanol steam reforming. International Journal of Hydrogen Energy 2018; 43(1): 198–207. doi: 10.1016/j.ijhydene.2017.10.182
Sarafraz MM, Safaei MR, Goodarzi M, Arjomandi M. Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst. International Journal of Hydrogen Energy 2019; 44(36): 19628–19639. doi: 10.1016/j.ijhydene.2019.05.215
Khani Y, Bahadoran F, Soltanali S, Ahari JS. Hydrogen production by methanol steam reforming on a cordierite monolith reactor coated with Cu–Ni/LaZnAlO4 and Cu–Ni/γ-Al2O3 catalysts. Research on Chemical Intermediates 2018; 44: 925–942. doi: 10.1007/s11164-017-3144-8
Cao L, Lu M, Li G, Zhang S. Hydrogen production from methanol steam reforming catalyzed by Fe modified Cu supported on attapulgite clay. Reaction Kinetics, Mechanisms and Catalysis 2019; 126: 137–152. doi: 10.1007/s11144-018-1493-y
Hosseini T, Haghighi M, Ajamein H. Fuel cell-grade hydrogen production from methanol over sonochemical coprecipitated copper based nanocatalyst: Influence of irradiation power and time on catalytic properties and performance. Energy Conversion and Management 2016; 126: 595–607. doi: 10.1016/j.enconman.2016.07.056
Talkhoncheh SK, Haghighi M, Minaei S, et al. Synthesis of CuO/ZnO/Al2O3/ZrO2/CeO2 nanocatalysts via homogeneous precipitation and combustion methods used in methanol steam reforming for fuel cell grade hydrogen production. RSC Advances 2016; 6(62): 57199–57209. doi: 10.1039/C6RA03858A
Yang S, Zhou F, Liu Y, et al. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy 2019; 44(14): 7252–7261. doi: 10.1016/j.ijhydene.2019.01.254
Tajrishi OZ, Taghizadeh M, Kiadehi AD. Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst. International Journal of Hydrogen Energy 2018; 43(31): 14103–14120. doi: 10.1016/j.ijhydene.2018.06.035
Deshmane VG, Abrokwah RY, Kuila D. Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. International Journal of Hydrogen Energy 2015; 40(33): 10439–10452. doi: 10.1016/j.ijhydene.2015.06.084
Mohtashami Y, Taghizadeh M. Performance of the ZrO2 promoted Cu–ZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming. International Journal of Hydrogen Energy 2019; 44(12): 5725–5738. doi: 10.1016/j.ijhydene.2019.01.029
Sá S, Silva H, Brandão L, et al. Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental 2010; 99(1–2): 43–57. doi: 10.1016/j.apcatb.2010.06.015
Fasanya OO, Al-Hajri R, Ahmed OU, et al. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming. International Journal of Hydrogen Energy 2019; 44(41): 22936–22946. doi: 10.1016/j.ijhydene.2019.06.185
Tonelli F, Gorriz O, Tarditi A, et al. Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming. International Journal of Hydrogen Energy 2015; 40(39): 13379–13387. doi: 10.1016/j.ijhydene.2015.08.046
Palo DR, Dagle RA, Holladay JD. Methanol steam reforming for hydrogen production. Chemical Reviews 2007; 107(10): 3992–4021. doi: 10.1021/cr050198b
Kapran AY, Orlyk SM. Hydrogen production in methanol reforming on modified copper-zinc catalysts: A review. Theoretical and Experimental Chemistry 2017; 53: 1–16. doi: 10.1007/s11237-017-9495-9
Takezawa N, Iwasa N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catalysis Today 1997; 36(1): 45–56. doi: 10.1016/S0920-5861(96)00195-2
Shishido T, Yamamoto Y, Morioka H, Takehira K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A: Chemical 2007; 268(1–2): 185–194. doi: 10.1016/j.molcata.2006.12.018
Frank B, Jentoft FC, Soerijanto H, et al. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. Journal of Catalysis 2007; 246(1): 177–192. doi: 10.1016/j.jcat.2006.11.031
Hammoud D, Gennequin C, Aboukaïs A, Abi Aad E. Steam reforming of methanol over x% Cu/Zn–Al 400 500 based catalysts for production of hydrogen: Preparation by adopting memory effect of hydrotalcite and behavior evaluation. International Journal of Hydrogen Energy 2015; 40(2): 1283–1297. doi: 10.1016/j.ijhydene.2014.09.080