Preparation and characterization of ATP-loaded chitosan/alginate nanoparticles for therapeutic applications
Vol 6, Issue 2, 2023
VIEWS - 1072 (Abstract) 291 (PDF)
Abstract
Adenosine triphosphate (ATP) is known as an energy source and is generated by mitochondria which is the powerhouse of the cell. The ATP supplies energy through the disassociation of the phosphate group by the cellular enzymes. The extracellular ATP in the extracellular environment acts as a signaling molecule and can act as an anti-inflammatory molecule, can promote cancer progression, and also can act as a pro-inflammatory molecule. The degradation of ATP is a major disadvantage by ectonucleotidases that attenuates the therapeutic property of ATP in the extracellular environment. We have formulated chitosan/alginate nanoparticles loaded with ATP for increasing their encapsulation efficiency and for sustained drug release. This encapsulation can avoid ATP degradation from ectonucleotidases. Nanoparticle characterization by DLS, FTIR, SEM, encapsulation efficiency, and cytotoxicity assay by XTT assay and Live-dead assay was monitored for the synthesized nano formulated ATP. Our results showed that the formulated ATP-loaded chitosan/alginate nanoparticle sized about 342 nm with the optimum encapsulation efficiency of about 92.03% with a sustained drug release profile. These nano formulated ATP could be used for calorie restriction conditions where ATP can be supplied as an extracellular source for bypassing oxidative phosphorylation, and we can circumvent the oxidant production during oxidative phosphorylation. The concept of avoiding oxidative stress by bypassing oxidative phosphorylation can open an avenue for healthy aging.
Keywords
Full Text:
PDFReferences
1. Agraharam G, Girigoswami A, Girigoswami K. Calorie restriction and extracellular ATP on health and longevity—A perspective. Current Nutrition & Food Science 2023; 19(1): 4–8. doi: 10.2174/1573401318666220531111219
2. Lombardi M, Gabrielli M, Adinolfi E, Verderio C. Role of ATP in extracellular vesicle biogenesis and dynamics. Frontiers in Pharmacology 2021; 12: 654023. doi: 10.3389/fphar.2021.654023
3. Trautmann A. Extracellular ATP in the immune system: More than just a “danger signal”. Science Signaling 2009; 2(56): pe6. doi: 10.1126/scisignal.256pe6
4. Kojima S, Ohshima Y, Nakatsukasa H, Tsukimoto M. Role of ATP as a key signaling molecule mediating radiation-induced biological effects. Dose-Response 2017; 15(1): 1559325817690638. doi: 10.1177/1559325817690638
5. Vultaggio-Poma V, Sarti AC, Di Virgilio F. Extracellular ATP: A feasible target for cancer therapy. Cells 2020; 9(11): 2496. doi: 10.3390/cells9112496
6. Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends in Molecular Medicine 2013; 19(6): 355–367. doi: 10.1016/j.molmed.2013.03.005
7. Rozengurt E, Heppel LA. A specific effect of external ATP on the permeability of transformed 3T3 cells. Biochemical and Biophysical Research Communications 1975; 67(4): 1581–1588. doi: 10.1016/0006-291x(75)90207-7
8. Landry Y, Lehninger AL. Transport of calcium ions by Ehrlich ascites-tumour cells. Biochemical Journal 1976; 158(2): 427–438. doi: 10.1042/bj1580427
9. Rapaport E. Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. Journal of Cellular Physiology 1983; 114(3): 279–283. doi: 10.1002/jcp.1041140305
10. Rapaport E. Experimental cancer therapy in mice by adenine nucleotides. European Journal of Cancer and Clinical Oncology 1988; 24(9): 1491–1497. doi: 10.1016/0277-5379(88)90340-9
11. Shabbir M, Thompson C, Jarmulowiczc M, et al. Effect of extracellular ATP on the growth of hormone-refractory prostate cancer in vivo. BJU International 2008; 102(1): 108–112. doi: 10.1111/j.1464-410X.2008.07578.x
12. Du YZ, Ying XY, Wang L, et al. Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. International Journal of Pharmaceutics 2010; 392(1–2): 164–169. doi: 10.1016/j.ijpharm.2010.03.050
13. Konno H, Matin AF, Maruo Y, et al. Liposomal ATP protects the liver from injury during shock. European Surgical Research 1996; 28(2): 140–145. doi: 10.1159/000129451
14. Girigoswami K, Pallavi P, Girigoswami A. Targeting cancer stem cells by nanoenabled drug delivery. In: Pathak S, Banerjee A (editors).Cancer Stem Cells: New Horizons in Cancer Therapies. Springer; 2020. pp. 313–337.
15. Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of gold and silver nanoparticles in theranostics. Applied Biochemistry and Biotechnology 2022; 194(9): 4187–4219. doi: 10.1007/s12010-022-03963-z
16. Jagannathan NR. Potential of magnetic resonance (MR) methods in clinical cancer research. In: Sobti RC, Sobti A (editors). Biomedical Translational Research. Springer; 2022. pp. 339–360.
17. Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water—Nanomaterial interaction to escalate twin-mode magnetic resonance imaging. ACS Biomaterials Science & Engineering 2020; 6(8): 4377–4389. doi: 10.1021/acsbiomaterials.0c00409
18. Balasubramanian D, Girigoswami A, Girigoswami K. Antimicrobial, pesticidal and food preservative applications of lemongrass oil nanoemulsion: A mini-review. Recent Advances in Food Nutrition & Agriculture 2022; 13(1): 51–58. doi: 10.2174/2212798412666220527154707
19. Balasubramanian D, Girigoswami A, Girigoswami K. Nano resveratrol and its anticancer activity. Current Applied Science and Technology 2023; 23(3). doi: 10.55003/cast. 2022.03. 23.010
20. Metkar SK, Girigoswami K. Diagnostic biosensors in medicine—A review. Biocatalysis and Agricultural Biotechnology 2019; 17: 271–283. doi: 10.1016/j.bcab.2018.11.029
21. Ihtisham M, Noori A, Yadav S, et al. Silver nanoparticle’s toxicological effects and phytoremediation. Nanomaterials 2021; 11(9): 2164. doi: 10.3390/nano11092164
22. Poonia K, Patial S, Raizada P, et al. Recent advances in Metal Organic Framework (MOF)-based hierarchical composites for water treatment by adsorptional photocatalysis: A review. Environmental Research 2023; 222: 115349. doi: 10.1016/j.envres.2023.115349
23. Keerthana V, Girigoswami A, Jothika S, et al. Synthesis, characterization and applications of GO-TiO2 nanocomposites in textile dye remediation. Iranian Journal of Science and Technology, Transactions A: Science 2022; 46(4): 1149–1161. doi: 10.1007/s40995-022-01337-y
24. Vedhantham K, Girigoswami A, Harini A, Girigoswami K. Waste water remediation using nanotechnology—A review. Biointerface Research in Applied Chemistry 2021; 12(4): 4476–4495. doi: 10.33263/BRIAC124.44764495
25. Pallavi P, Harini K, Crowder S, et al. Rhodamine-conjugated anti-stokes gold nanoparticles with higher ROS quantum yield as theranostic probe to arrest cancer and MDR bacteria. Applied Biochemistry and Biotechnology 2023; 1–15. doi: 10.1007/s12010-023-04475-0
26. Deepika R, Girigoswami K, Murugesan R, Girigoswami A. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Current Drug Delivery 2018; 15(5): 652–657. doi: 10.2174/1567201814666170825160617
27. Piacentini E. Encapsulation efficiency. In: Drioli E, Giorno L (editors). Encyclopedia of Membranes. Springer; 2016. pp. 706–707.
28. Nishakavya S, Girigoswami A, Deepa R, et al. Size attenuated copper doped zirconia nanoparticles enhances in vitro antimicrobial properties. Applied Biochemistry and Biotechnology 2022; 194(8): 3435–3452. doi: 10.21203/rs.3.rs-807437/v1
29. Gowtham P, Girigoswami K, Pallavi P, et al. Alginate-derivative encapsulated carbon coated manganese-ferrite nanodots for multimodal medical imaging. Pharmaceutics 2022; 14(12): 2550. doi: 10.3390/pharmaceutics14122550
30. Drabczyk A, Kudłacik-Kramarczyk S, Głąb M, et al. Physicochemical investigations of chitosan-based hydrogels containing Aloe Vera designed for biomedical use. Materials 2020; 13(14): 3073. doi: 10.3390/ma13143073
31. Queiroz MF, Teodosio Melo KR, Sabry DA, et al. Does the use of chitosan contribute to oxalate kidney stone formation?. Marine Drugs 2014; 13(1): 141–158. doi: 10.3390/md13010141
32. Nagpal M, Singh SK, Mishra D. Superporous hybrid hydrogels based on polyacrylamide and chitosan: Characterization and in vitro drug release. International Journal of Pharmaceutical Investigation 2013; 3(2): 88–94. doi: 10.4103/2230-973X.114906
33. Jamnongkan T, Kaewpirom S. Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. Journal of Polymers and the Environment 2010; 18: 413–421. doi: 10.1007/s10924-010-0228-6
34. Taha MO, Aiedeh KM, Al-Hiari Y, Al-Khatib H. Synthesis of zinc-crosslinked thiolated alginic acid beads and their in vitro evaluation as potential enteric delivery system with folic acid as model drug. Die Pharmazie-An International Journal of Pharmaceutical Sciences 2005; 60(10): 736–742.
35. Pereira R, Tojeira A, Vaz DC, et al. Preparation and characterization of films based on alginate and aloe vera. International Journal of Polymer Analysis and Characterization 2011; 16(7): 449–464. doi: 10.1080/1023666X.2011.599923
36. Han J, Zhou Z, Yin R, et al. Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. International Journal of Biological Macromolecules 2010; 46(2): 199–205. doi: 10.1016/j.ijbiomac.2009.11.004
37. Yuvarani I, Kumar SS, Venkatesan J, et al. Preparation and characterization of curcumin coated chitosan-alginate blend for wound dressing application. Journal of Biomaterials and Tissue Engineering 2012; 2(1): 54–60. doi: 10.1166/jbt.2012.1037
38. Liu S, Wang X, Pang S, et al. Fluorescence detection of adenosine-5’-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots. Analytica Chimica Acta 2014; 827: 103–110. doi: 10.1016/j.aca.2014.04.027
39. Cai J, Chen X, Wang X, et al. High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings. Royal Society of Chemistry Advances 2018; 8(69): 39463–39469. doi: 10.1039/C8RA06922K
40. Mello PA, Filippi-Chiela EC, Nascimento J, et al. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells. Molecular Biology of The Cell 2014; 25(19): 2905–2918. doi: 10.1091/mbc.E14-01-0042
41. Li S, Li X, Guo H, et al. Intracellular ATP concentration contributes to the cytotoxic and cytoprotective effects of adenosine. PLoS One 2013; 8(10): e76731. doi: 10.1371/journal.pone.0076731
42. Schrader J. Ectonucleotidases as bridge between the ATP and adenosine world: Reflections on Geoffrey Burnstock. Purinergic Signalling 2022; 18(2): 193–198. doi: 10.1007/s11302-022-09862-6
43. Beldi G, Enjyoji K, Wu Y, et al. The role of purinergic signaling in the liver and in transplantation: Effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. Frontiers in Bioscience: A Journal and Virtual Library 2008; 13: 2588–2603. doi: 10.2741/2868
44. Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. Advances in Pharmacology 2011; 61: 263–299. doi: 10.1016/B978-0-12-385526-8.00009-6
45. Roberts V, Stagg J, Dwyer KM. The role of ectonucleotidases CD39 and CD73 and adenosine signaling in solid organ transplantation. Frontiers in Immunology 2014; 5: 64. doi: 10.3389/fimmu.2014.00064
DOI: https://doi.org/10.24294/ace.v6i2.2073
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.